
  307

I. INTRODUCTION 
 

Object tracking is an important task for many applications, 
such as for robot navigation, surveillance, automotive safety, 
and video content indexing. Based on trajectories obtained 
through tracking, some advanced behaviour analysis can be 
applied. For instance, a pedestrian’s trajectory can be 
analysed to warn a driver if the trajectories of the vehicle and 
of the pedestrian are potentially intersecting. 

For multiple object tracking, tracking-by-detection 
methods are the most popular algorithms. A detector is used 
in each image frame to obtain candidate objects. Then, with 
a data-association procedure, all the candidates are matched 
to the existing trajectories as known up to the previous 
frame. Any unmatched candidate starts a new trajectory. 
Since there is no perfect detector that detects all objects 
without any false positives and false negatives, sometimes 
objects are missed (i.e., they appear in the image but are not 
detected), or background windows are incorrectly detected 
as being objects. Such false-positive or false-negative 
detections increase the difficulty of tracking. 

Occlusion by other objects or the background is one of 
the main reasons for detection to fail and it also increases 
the difficulty of tracking (e.g., identity switch). Some 
algorithms [1, 2] propose tracking objects in the 2D image 
plane. The occlusion problem is handled either using part 
detectors and tracking detected body parts, or adopting 
instance-specific classifiers to improve performance of data 
assignment. However, tracking in the 2D image plane 
increases the ambiguity of data association. A tall person 
nearby, and a small person far away, for example, may 
appear very close to each other in the image, and, possibly, 
in some frames the tall person occludes the small person. 
But they are actually several meters away from each other. 
Thus, often, and also in this paper, stereo information is 
adopted to improve the tracking performance [3-5], and 
multiple pedestrians are tracked in 3D coordinates. 
  Tracking objects with irregular movements in 3D space is a 
challenging task due to the totally unknown speed and direction. 
In this paper, the application of an unscented Kalman filter 
(UKF), which can also handle nonlinear—in fact, fully 
irregular trajectories in 3D space, is demonstrated. For the 
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original paper on UKF see [6]. Similar work is proposed in [5]. 
However, instead of modelling the motion of the vehicle and 
the pedestrians separately, we straightforwardly model the 
relative motion between them, and no ground plane is assumed, 
so that objects moving with 6 degrees of freedom can be 
tracked properly. Different types of models are tested and 
compared in both simulation and real sequences. 
 
 
II. RELATED WORK 
 

Multiple object tracking has attracts a great deal of 
attention recently in computer vision research. Today, an 
update of the review [7] from 2006 should also include 
work such as in [2-4, 8-13]. 

Kalman filters (KF) have been extensively adopted to 
deal with tracking tasks. A KF is a recursive Bayesian filter, 
firstly, using motion information to predict the possible 
position, followed by fusing the observation (detection) and 
predicted position. A linear KF is used for tracking (e.g., [7]) 
when movement is such that linear models may be used for 
approximation. Obviously, a linear model is not suitable for 
most cases. The extended Kalman filter (EKF) was designed 
[14] for handling a nonlinear model by linearizing functions 
using the Taylor expansion extensively. For example, an 
EKF has been used for simultaneous localization and 
mapping [15], and for pedestrian tracking [16]. A particle 
filter was used to handle the task in [17]. Performance 
similar to an EKF is reported in [3]. 

The UKF can handle a nonlinear model by using the 
unscented transform to estimate the first and second order 
moments of sigma points, which represent the distribution 
of a predicted state and predicted observations, and it 
appears that the UKF does this better than the EKF [18]. 
Thus, in this paper, a UKF is used for tracking multiple, 
irregularly moving objects in 3D space, which is a highly 
nonlinear problem. 

 
 

III. UNSCENTED KALMAN FILTER 
 

The unscented transform (UT) is the core component that 
enables the UKF able to be able to handle nonlinear models. 
Let L be the dimensionality of the system state xt-1|t-1 at time 
t-1. If the system noise (process noise Q and measurement 
noises R) is not additive noise, the state is augmented 
before UT. In our case, random acceleration is introduced as 
process noise; thus, the state augmented with a process 
noise vector, is denoted by 

 X |   
 
and called vector for short. The dimension of the augmented 
vector depends on the process model, which is illustrated in 

Section IV. Let xt |t-1 denote the predicted state at time t 
when passing xt-1|t-1 through process function f. Let yt |t-1 be 
the predicted observation at time t when passing xt |t-1 
through observation function h. 

The UT works by sampling 2L+1 sigma vectors  in 
the augmented state space (following [6]), forming a matrix 

. The covariance matrix in augmented state space is 
denoted by P . Let P  |   

be the state covariance matrix (i.e., describing dependencies 
between components of a state x). Formally, 

  x  |   x  |  L λ  |  for  1, 2, … ,   x  |  L λ  |   for  1, 2, … , 2  0  0
   

where λ is a positive real, used as a scaling parameter. 
These sigma vectors can be passed through a nonlinear 
function (e.g., f or h) one by one, thus defining trans-formed 
(i.e., new) sigma vectors such as 

  |  or  |  

Means xt |t-1 or yt|t-1 and covariance matrices 

 |   or  |  

are obtained as follows; take h for example: 
  | χ  |  

y  |   

 |   Y y  | Y y  |  

 
with constant weights . . Details are given in [6]. 

The UKF is illustrated as follows. At first we initialize 
the state x=x0 and state covariances . For the 
augmented vectors, let  

 x x 0 T ,  
 
where Q denotes the process-noise covariance matrix. 
Details about Q are given in Section IV. For 1, … , ∞ , 
we calculate sigma vectors as follows:  
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 | x  | , x  |   | , x  |   | ) 

where  √  . The process update is as follows:  

 | f  | ,  |  

x  |  

P  |  x  | x  |  

We update the sigma vectors using  

 | x  | , x  |   | ,  x  |   |  

 |  |  

 |   

and update the measurement covariance matrix as follows:  

 |  |  |  
 

where R is the assumed measurement noise covariance, 
depending on the observation model selected. Details are given 
in Section IV. 

Altogether, the UKF is defined by  
 

 |  x  | y  |  

  |  | _1 x  |  x  | y y  |   |  | |  
 
 

IV. MULTIPLE OBJECT TRACKING 
 

Following tracking-by-detection methods, which are 
popular for solving multiple-object tracking tasks, a detector 
is applied in each frame to generate object candidates which 
are outputs of the detector. One UKF is adopted for tracking 
one object separately; thus a group of detected pedestrians 
defines a family of UKFs to be processed simultaneously. 
Each UKF tracks one detected object. The predicted state of 
a UKF is used for data association; when an observation (of 
the tracked object) is available in the current frame then we 
update the predicted state by using the corresponding UKF. 

A. Detection 
 

Detection-by-tracking methods rely on evaluating 
rectangular regions of interest, and we call them object 
boxes if positively identified as containing an object of 
interest. For pedestrian tracking, we adopt the popular 
histogram of oriented gradients (HOG) feature method and 
a support vector machine (SVM) classifier, originally 
introduced in [19]. HOG features describe the human profile 
by an oriented gradient histogram. An SVM classifier is able 
to handle high-dimensional and nonlinear features (such as 
HOG features). It projects sample features into a high-

Fig. 1. The depth map on top uses a colour code for calculated
distances; depth values are only shown at pixels where the mode filter
accepts the given value. The lower images show detected (coloured)
object boxes. 
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dimensional space, and then finds a hyperplane to separate 
two classes. Instead of using a sliding window, regions of 
interest (i.e., inputs to the classifier) are selected by 
analysing calculated stereo information (depth and disparity 
maps), as proposed in [20]. 

Fig. 1 shows several detection results in pedestrian 
sequence, dots (cyan) denote the boxes’ centre that are 
recognized as pedestrians, and the red rectangles denote the 
final detection results. As can be seen in the results, the 
object boxes may contain background, shift from the object, 
or miss the pedestrians. 

For the detection of Drosophila larvae (an example of 2D 
movement), thresholds and connected components are 
adopted to obtain one object box for each larva. Several 
larva detection results are shown in Fig. 2. As the scene is 
certain, the detection results are more reliable when 
compared to the pedestrian sequence. However, no depth 
information is available here. 

 
 
 

 
 
 
 
 
Fig. 2. Larvae detection results shown by (cyan) object boxes. 
 
 
B. UKF-based Object Tracking 
 

As there is an unknown number of objects in a scene, 
the state-dimensionality would expand significantly if we 
would have decided to track all pedestrians in one UKF; 
in this case, the speed of tracking reduces dramatically 
when the scene is crowded with many detected objects. 
Thus, we decided on one UKF for each detected object 
for tracking. 

Choosing a proper model is important. In this subsection 
we offer three models for possible selection: 3DVT means 
that 3D position (world coordinates) with velocity is 
observed, 3DT means that 3D position without velocity is 
observed, and 2DT means that 2D position (image 
coordinates) without velocity is observed. These models are 
compared in Section V. 

 
1) The Two 3D Models 
In the 3DVT model, the object is tracked in 3D world 

coordinates. Its 3D position (x, y, z) is the first part of the 
state. We also include the velocity ( , , ). Thus, a state 
x=(x, y, z, , , )T is 6-dimensional. 

 

a) Process model: We assume constant velocity between 
adjacent frames, with Gaussian distributed noise 
acceleration n 0, Σ . The diagonal elements in ∑  
are set to be equal and denoted by σ . Thus,  

 Δ Δ , Δ  y Δ Δ , Δ  Δ Δ , Δ  
 
where Δ  is the time interval between subsequent frames. 
 

b) Observation model: An observation consists of the 
position ( , ) (say, the centroid of the detected object box 
in the left camera), disparity d of the detected object, and 
velocity ( , , ) in 3D coordinates. The usual pinhole 
camera projection model is used 4to map 3D points onto the 
image plane,  

 / , /  / ,  
,  

 
where f denotes focal length, and b denotes the length of the 
baseline between two rectified stereo cameras. In this case,  
 σ , σ , σ , σ , σ , σ  

 
For the disparity d we select the mode in the disparity 

map in a fixed (e.g., 20 × 20) neighbourhood around the 
centroid ( , ) of the detected object box. 3D scene flow 
( , , ) can be obtained by combining optic flow and 
stereo information [21]. 

As it is difficult to obtain high-quality scene flow as 
required for 3DVT, 3DT simplifies the 3DVT model by 
excluding the scene flow from the observation, and has the 
same process model as 3DVT. In this case,  

 σ , σ , σ  
 
2) The 2D Model 
If only monocular recording is available, the object is 

tracked in the 2D image plane only. The state x=(i,j,vi,vj)T 
consists of position (i, j) and velocity (vi, vj). 

  
a) Process model: The process model is the same as for 

the 3D models. We assume a constant velocity between 
subsequent frames with a Gaussian noise distribution for 
acceleration n :     

b) Observation model: An observation consists of the 
central position (i0, j0) of an object box only, i0 = i and j0 = j, 
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resulting in σ , σ  for this case.  
C. Data Association 

 
As each object is tracked independently, data association 

by matching candidates to existing trajectories becomes 
important. If no match is found then we decide to initialize a 
new tracker. 

Since object movements are continuous, the estimated 
velocity in the UKF can be used as a cue to localize the 
search area in order to find the match object. For each 
trajectory, the possible location (i.e., (xp, yp, zp) for 3D, and  
(ip, jp) for 2D) of the object in the current frame is predicted 
by a process model used in the EKF. This location is used as 
a reference for searching potentially matching candidates in 
the current frame. Currently we simply match candidates 
based on the shortest Euclidean distance and a given 
threshold T. 

One candidate might be matched with several trajectories 
if the Euclidean distance is below T. Trajectories compete 
for the candidates, and in the end, the closest one wins. If a 
candidate is not matched to any trajectory, a new tracker is 
initialized. If a trajectory does not win any of the candidates, 
the tracker is propagated with the given prediction, and the 
new state is the predicted state, without being updated by an 
observation (because it is not available). 

No object appearance description is used here for 
assigning an object to a trajectory. In general, the inclusion 
of appearance representation (e.g., a colour histogram, or an 
instance-specific shape model) improves the performance. 
However, this is out of the scope of this paper, where we are 
focusing on the combination of different data association 
methods. 
 
 
V. EXPERIMENTS  

In this section, first, our three models (3DVT, 3DT, and 
2DT) are tested in a simulated environment with different 
parameter sets. Second, our multiple-object tracking method 
is tested on real video sequences where (3D example) 
pedestrians are walking in inner-city scenes, or (2D example) 
larvae are moving on a flat culture dish. 
 
A. Simulated Tracking  

The three models defined in Section IV are tested in a 
simulation environment in OpenGL (SGI, Fremont, CA, 
USa). A cub is moving on a circular path around a 3D point 
with constant speed, as shown in Figs. 3 and 4. Acceleration 
noise na with different covariance (e.g., = 0.0001, 0.01, 1), 
and measurement noise nm with different covariance (e.g., 

= 10, 50, 100, = 50, 100, 150), are used to test and 

compare the three models’ performance. The simulation 
environment is different for 2D and 3D models, where for 
2D, positions are integral pixel coordinates in the image 
plane, but for 3D, position coordinates are reals. The radius 
of the circle in the 3D models is 10, while in the 2D model 
it is 50. In both environments, measurements are degraded 
by noise before being sent to the UKF. 

Fig. 3 demonstrates the effect of σ , having fixed σ    
and σ . Experiments show that larger σ  values result 
in more unstable trajectories. A large σ  means that the 
process model produces a predicted state that is fluctuating 
with large magnitudes. Results show that σ = 0.0001 is a 
reasonable choice for 3D models. For the 2D model, a 
smaller σ  yields smooth estimation, but the shifts are 
significant.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Simulation results for variations in the variance of acceleration 
noise. From left to right, σ = 0.0001, 0.01, or 1, with fixed values 
σ = σ = 50, and σ = 100. From top to down, the tracking model is 
3DVT, 3DT and 2DT, respectively.   

A larger σ  value produces estimations that are 
closer to the true positions, but fluctuations are 
significant, for an experiment with σ =1 for the 2D case. 
In general, 3DT and 3DVT converge better than 2DT, 
while 3DT and 3DVT show a similar performance. 3D 
models use stereo information rather than just a single 
image as for the 2D model, which also proves that stereo 
information can help to improve the tracking 
performance. As the measured 3D position is noisy, the 
measure of velocity is even noisier; this appears to be the 
main reason for the observation that the inclusion of 
velocity cannot improve the performance. 
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Fig. 4 shows results for our models for different covariance 
values σ  and σ  of measurement noise. Significantly 
increasing measurement noise (i.e., higher uncertainty of 
observations) reduces the performance only slightly. This 
demonstrates that, to some degree, the UKF is a robust 
tracker, which is not vulnerable to detection uncertainties. As 
before, 3DT and 3DVT converge better than 2DT, while 3DT 
and 3DVT show a similar performance. 

                     
Fig. 4. Simulation results for variable variance of measurement noise. 
From left to right, = 10, 50, or 100, = 50, 100, 150, respectively, 
with fixed = 0.0001 for 3D models, = 1 for 2D models. From top to 
down, the tracking models are 3DVT, 3DT and 2DT, respectively.   
B. Multiple Object Tracking in Real Data  

In this section we report on the performance of UKF-
supported tracking for multiple larvae using the 2DT model, 
and for multiple pedestrians in traffic scenes using the 3DT 
model. The larvae and pedestrian sequences are recorded at 
30 and 15 frames per second, respectively. 

Results for larvae tracking are shown in Fig. 5. As the 
velocity in the model is initialized by (0,0), the UKF-
estimation is “slower” than the real speed of the larvae in the 
first 30 frames. The speed of convergence can be improved 
by increasing , but it should be noted that the larger the 

 value is, the larger the magnitude of fluctuation. The 
estimated trajectories follow the moving larvae effectively, 
mainly because all of the larvae are properly detected in all of 
the frames. However, such a complete detection cannot be 
expected for pedestrian sequences. Next, we test the UKF for 
such “noisy” detection results as pedestrian sequences. 

The results for pedestrian tracking are shown in Fig. 6. 
Objects are missing or shifting from time to time due to the 
clustered background (e.g., the car in the traffic scene 
detected as a pedestrian), illumination variations leaving 
some pedestrians undetected, or internal variations between 
objects (i.e., unstable detections). Our experiments verified 
that UKF predictions are able to follow irregularly moving 
pedestrians when detection fails for a few frames, and can 
even correct unstable detections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. 2D Tracking results of larva sequences. From top to bottom: 
tracking results in Frames 26, 46, and 166 of one sequence. The red lines 
show the detected track, and the white lines show the unscented Kalman 
filter-predicted track. The blue lines represent estimated trajectories. The 
left column is the original intensity image overlaid with the estimated 
trajectories.  

The second frame in Fig. 6 shows that the undetected 
pedestrian is predicted correctly in the white object box and is 
successfully matched to a detected position in the third frame. 
The last frame in Fig. 6 demonstrates that displaced 
detections are corrected by the UKF. Using only the defined 
distance rule for data assignment, this appears to be 
insufficient, especially for the given detection results. A small 
threshold may lead to a mismatch (i.e., the detection fails to 
satisfy the rule), and a large threshold may lead to an identity 
switch (i.e., a pedestrian is matched to another pedestrian).   
VI. CONCLUSIONS  

Assigning one UKF to each detected (moving) object 
simplifies the design and implementation of UKF prediction 
of 2D or 3D motion. Experiments demonstrate the robustness 
of the chosen approach. This tracker only generates short-
term tracks when detection is not reliable; long-term tracking 
should be possible by also introducing dynamic programming. 
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(a)                     
 

 
 
 
 

For evaluating the performance in real-world (either 2D or 
3D) applications, more extensive tests need to be 
undertaken, especially for the design and evaluation of 
quantitative performance measures. For example, the 
measures discussed in [22] for evaluating visual odometry 
techniques might also be of relevance for the tracking case. 
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