• Title/Summary/Keyword: 3D Geometric Modeling

Search Result 180, Processing Time 0.025 seconds

A Measurement Error Correction Algorithm of Road Structure for Traveling Vehicle's Fluctuation Using VF Modeling (VF 모델링을 이용한 주행차량의 진동에 대한 도로 계측오차 보정 알고리듬)

  • Jeong, Yong-Bae;Kim, Jung-Hyun;Seo, Kyung-Ho;Kim, Tae-Hyo
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.190-200
    • /
    • 2005
  • In this paper, the image modelling of road's lane markings is established using view frustum(VF) modeling. This algorithm also involve the real time processing of the 3D position coordinate and the distance data from the camera to the points on the 3D world coordinate by the camera calibration. In order to reduce their measurement error, an useful algorithm for which analyze the geometric variations clue to traveling vehicle's fluctuation using VF model is proposed. In experiments, without correction, for instance, the $0.4^{\circ}$ of pitching rotation gives the error of $0.4^{\sim}0.6m$ at the distance of 10m, but the more far distance cause exponentially the more error. We confirmed that this algorithm can be reduced less than 0.1m of error at the same condition.

  • PDF

Review on the Three-Dimensional Magnetotelluric Modeling (MT 법의 3차원 모델링 개관)

  • Kim, Hee-Joon;Nam, Myung-Jin;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.148-154
    • /
    • 2004
  • This article reviews the development of three-dimensional (3-D) magnetotelluric (MT) modeling. The 3-D modeling of electromagnetic fields is essential in understanding the physics of MT soundings, and in implementing an inversion method to reconstruct a 3-D resistivity image. Although various numerical schemes have been developed over the last two decades, practical methods have been quite limited. However, the recent rapid improvement in computer speed and memory, as well as the advance in iterative solution algorithms for a large system of equations, makes it possible to model the MT responses of complex 3-D structures, which have been very difficult to simulate before. The use of staggered grids in finite difference method has become popular, conserving a magnetic flux and an electric current and allowing for realistic discontinuous fields. The convergence of numerical solutions has been greatly accelerated by adopting Krylov subspace methods, proper preconditioning techniques, and static divergence corrections. The vector finite-element method using edge elements is also free from the discontinuity problem, and seems a natural choice for modeling complex structures including irregular topography because its flexibility allows one to capture full geometric complexity.

Multi-Resolution Modeling Technique Using Mesh Segmentation

  • Kim, Dong-Hwan;Yun, Il-dong;Lee, Sang-Uk
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.474-477
    • /
    • 2000
  • This paper presents an algorithm for simplification of 3D triangular mesh data, based on mesh simplification. The proposed algorithm is first attempt to segment the entire mesh into several parts using the orientation of triangles. Then simplification algorithm is applied to each segment that has similar geometric property. The proposed two step multi-resolution modeling scheme would yield better performance then conventional algorithm like edge collapse technique, since the segmentation step can give global information on the input shape. The experimental results show that the proposed algorithm is performed efficiently.

  • PDF

A practical method which reduce the model data size from parametric solid modeling in CAD tool (CAD 툴의 파라메트릭 솔리드 모델링에서 데이터 크기를 감소시키는 실제적인 방법)

  • Choi, Nam-Gyu;Kim, Seung-Wan;Gwun, Ou-Bong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.709-711
    • /
    • 2005
  • 이 논문에서는 CATIA, PRO-E 등의 CAD에서 3D 모델을 생성할 때 사용하는 파라메트릭 솔리드 모델링 기법에서 일반적으로 사용하는 방법보다 모델링 데이터의 용량을 크게 줄일 수 있는 방법에 대하여 고찰한다. 3D 파라메트릭 솔리드 모델링 기법은 기본적인 상세 솔리드들을 생성하여 부울(Boolean) 연산으로 이들을 조합하여 복잡한 형상(geometric object)을 만드는데 이 과정에서 많은 부울 연산이 수행된다. 그런데 각각의 상세 솔리드들의 크기가 필요 이상으로 크게 만들어 짐으로써 생성된 모델의 데이터 용량이 방대하게 되고 생성시간에도 영향을 미친다. 여기에서는 실무 경험을 바탕으로 처음에 생성된 상세 솔리드의 불필요한 부분을 제거하여 부울 연산에 알맞은 크기로 변경하여 모델링 데이터의 용량을 줄이는 방법을 제안한다.

  • PDF

Design of an Integrated Inductor with Magnetic Core for Micro-Converter DC-DC Application

  • Dhahri, Yassin;Ghedira, Sami;Besbes, Kamel
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.369-374
    • /
    • 2016
  • This paper presents a design procedure of an integrated inductor with a magnetic core for power converters. This procedure considerably reduces design time and effort. The proposed design procedure is verified by the development of an inductor model dedicated to the monolithic integration of DC-DC converters for portable applications. The numerical simulation based on the FEM (finite elements method) shows that 3D modeling of the integrated inductor allows better estimation of the electrical parameters of the desired inductor. The optimization of the electrical parameter values is based on the numerical analysis of the influence of the geometric parameters on the electrical characteristics of the inductor. Using the VHDL-AMS language, implementation of the integrated inductor in a micro Buck converter demonstrate that simulation results present a very promising approach for the monolithic integration of DC-DC converters.

The Study on Reconstruction of Composite Surfaces by Reverse Engineering Techniques (Reverse Engineering 기술을 적용한 복합면의 재구성 정보 추출을 위한 연구)

  • Seo, Ji-Han;Lee, Hong-Chul;Shone, Young-Tea;Park, Se-Hyung
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.205-209
    • /
    • 1999
  • In reverse engineering area, the reconstruction of surfaces from scanned or digitized data is being developed, but geometric model of existing objects is not available in industries. This paper presents the new approach to the reconstruction of surface technique. A proposed methodology finds base geometry and blends surface between them. Each based geometry is divided by tri-angular patches which are compared with their normal vector for face grouping. Each group is categorized analytical surface such as a part of cylinder, sphere and cone, and plane shapes to represent the based geometry surface. And then, each based geometry surface is implemented to the infinitive surface. Infinitive surface's intersections are trimmed by boundary representation model reconstruction. This method has several benefits such as time efficiency and automatic functional modeling system in reverse engineering. Especially, it can be directly applied 3D fax and 3D copier.

  • PDF

Design Support Based on 3D-CAD System using functional Space Surrounding Design Object (설계대상물의 외부공간을 이용한 3차원 CAD 시스템에 의한 설계지원)

  • Nahm, Yoon-Eui;Ishikawa, Haruo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.102-110
    • /
    • 2009
  • Concurrent Engineering(CE) has presented new possibilities for successful product development by incorporating various product life-cycle functions from the earlier stage of design. In the product design, geometric representation is vital not only in its traditional role as a means of communicating design information but also in its role as a means of externalizing designer's thought process by visualizing the design product. During the last dozens of years, there has been extraordinary development of computer-aided tools intended to generate, present or communicate 3D models. However, there has not been comparable progress in the development of 3D-CAD systems intended to represent and manipulate a variety of product life-cycle information in a consistent manner. This paper proposes a novel concept, Minus Volume (MV), to incorporate various design information relevant to product lift-cycle functions. MV is a functional shape that is extracted from a design object within a bounding box. A prototype 3D-CAD system is implemented based on the MV concept and illustrated with the successful implementation of concurrent design and manufacturing.

Collaborative Design based on 3D-CAD System Using Functional Space Surrounding Design Object over the Networked Environment (네트워크 분산 환경 하에서 설계대상물의 외부공간을 이용한 3차원 CAD 시스템에 의한 협조설계 지원)

  • Nahm, Yoon-Eui;Ishikawa, Haruo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.169-177
    • /
    • 2009
  • Concurrent Engineering (CE) has presented new possibilities for successful product development by incorporating various product life-cycle functions from the earlier stage of design. In the product design, geometric representation is vital not only in its traditional role as a means of communicating design information but also in its role as a means of externalizing designer's thought process by visualizing the design product. During the last dozens of years, there has been extraordinary development of computer-aided tools intended to generate, present or communicate 3D models. However, there has not been comparable progress in the development of 3D-CAD systems intended to represent and manipulate a variety of product life-cycle information in a consistent manner. In the previous research, the authors proposed a novel concept called Minus Volume (MV) to incorporate various design information relevant to product life-cycle functions. This paper proposes the use of the MV concept for the collaborative design environment, where many team members are geographically distributed over the networked environment, including Internet, Intranet, WWW, etc. A prototype 3D-CAD system is implemented based on the MV concept and illustrated with the successful implementation of collaborative design example.

LiDAR Data Segmentation Using Aerial Images for Building Modeling (항공영상에 의한 LiDAR 데이터 분할에 기반한 건물 모델링)

  • Lee, Jin-Hyung;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.47-56
    • /
    • 2010
  • The use of airborne LiDAR data obtained by airborne laser scanners has increased in the field of spatial information such as building modeling. LiDAR data consist of irregularly distributed 3D coordinates and lack visual and semantic information. Therefore, LiDAR data processing is complicate. This study suggested a method of LiDAR data segmentation using roof surface patches from aerial images. Each segmented patch was modeled by analyzing geometric characteristics of the LiDAR data. The optimal functions could be determined with segmented data that fits various shapes of the roof surfaces as flat and slanted planes, dome and arch types. However, satisfiable segmentation results were not obtained occasionally due to shadow and tonal variation on the images. Therefore, methods to remove unnecessary edges result in incorrect segmentation are required.

Data interoperability between authoring software and BIM system focused on the office building in conceptual design phase (설계 초기 단계 형상정보 연동 데이터 호환체계 개발 - 오피스 매스를 중심으로)

  • Park, Jung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.494-500
    • /
    • 2020
  • Owing to the complexity of shapes and elements, some difficulties are found in the modeling and sharing phases in a project at the earlier design stages. This paper extends the boundaries by suggesting the data interoperability between 3D modeling software, McNeel Rhino 3D and BIM system, and Autodesk® Revit® Architecture. The main research methodology is to link the architectural form data in the NURBS supporting the 3DM format, especially for integrating surface properties into the mass family template of Revit. This algorithm-driven interoperability approach using visual programming, such as Dynamo in conjunction with Autodesk®, can be applicable in a theoretical part and also a practical use-case. This paper summarizes these results as sequence guidelines and project template recommendations suggesting an efficient design process to interoperate geometric data with the BIM system to manipulate and control the regular and curved form of office buildings.