• Title/Summary/Keyword: 3D Building Construction

Search Result 724, Processing Time 0.029 seconds

A Study on 4D CAD and GIS Integrated System for Process Risk Management Model (4D CAD와 GIS의 통합시스템을 통한 프로젝트 단계별 리스크관리 모델에 관한 연구)

  • Jeon, Seung-Ho;Yun, Seok-Heon;Paek, Joon-Hong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.91-98
    • /
    • 2007
  • Recently a construction industry introduces information that brings about many advantages in the early planning phase, design phase and construction phase. Especially it replaces 2D, 3D systems(usually using explanation of drawing information) ai 4D CAD(offering a sort of 4D-having relation of construction schedule and 3D drawing information). Nevertheless a 4D has these benefits, it has limits which are not only usually using 3D modeling but also limit of making full use of practical affairs because of a lack of connecting varietals of progress of work. To solve these uppermost limits, this research is presenting unified systems to use in risk management which are efficient management of space and non-space information, space analysis, making full use of data base, introducing GIS system of easy interaction.

High Temperature Compressive Strength of Polymer Cement Composite Apply for 3D Printing Exterior Materials (시멘트 폴리머를 사용한 외장재용 결합재의 고온강도 특성)

  • Shin, Hyeon-Uk;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.116-117
    • /
    • 2019
  • 3D printing technology can be applied to various industries, and is trapped by major technologies that change existing manufacturing processes. 3D printing materials must satisfy designability, economy and productivity, and building materials are required to have strength and economy secured technology. 3D printing technology of construction field can be divided into structural materials and internal and external materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a lamination type, and the role of a cement base composite material is important. In this research, we developed a cementitious base binder applicable as a 3D printing exterior materials, confirmed high temperature strength characteristics for application as an exterior materials of buildings and confirmed its possibility.

  • PDF

A Proposal of 3D Printing Service Platform for Construction Industry through case analysis (사례 분석을 통한 건설 3D 프린팅 서비스 플랫폼 제안)

  • Kim, Jongsung;Kim, Sun-Kyum;Seo, Myoung-Bae;Kim, Tae-Hoon;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.53-61
    • /
    • 2017
  • Recently, there has been an increase in the number of web-based three-dimensional (3D) printing-related service platforms, which allow consumers to collect 3D modeling data, make requests for production, and receive goods through a distribution service using the service platform. The application of 3D printing technology has been expanded to the construction field, yet no guidelines for the related service platform or operation examples can be found. Therefore, the functions of 10 web-based 3D printing service platforms actively used in other industries were investigated and analyzed in this study, and the analysis results were used as a guideline to develop a 3D printing service platform for the construction industry. In addition, the design, construction and distribution services to be equipped with the construction 3D printing service integration platform were presented by creating the driving scenario of the platform. As 3D printing technology develops, the overall construction and architectural paradigms for design, construction and distribution will change. To prepare for such changes and to pioneer the digital construction market in the future, the role of the 3D printing service platform is expected to increase continually.

Development of Design Support Tool for Building 3D printing (건축물 3D 프린팅 설계지원도구 개발)

  • Lee, Dongyoun;Seo, Myoung-Bae;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.94-105
    • /
    • 2020
  • Recently, most studies of 3D printing in construction have focused on the development of 3D printers and materials suitable for construction 3D printers. In comparison, there has been little research on design support tools that enable representative BIM data of building modeling tools to be applied to 3D printing. In addition, existing 3D printing slicing programs are commercialized around manufacturing, showing that they are unsuitable for construction 3D printing. Therefore, this research aims to develop a design support tool for 3D printing for buildings. The developed design support tool was validated based on arbitrary BIM data. Verification showed that wall pattern generation was modeled accurately without errors, and a calculation of the construction period showed that the formula presented in this study was valid. Furthermore, the maximum length of the mesh split was set to 100mm to minimize errors when converting to STL files.

Establishment of Plan to lighten CAD Model for Strengthening Usability of Nuclear Power Plant 3D Model (원전 3D 모델 사용성 강화를 위한 CAD 모델 경량화 방안 정립)

  • Kim, Jong-Myeong;Kim, Woo-Joong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.248-249
    • /
    • 2019
  • In the nuclear industry, in order to keep pace with the 4th industrial revolution era, they are trying to improve the construction and maintenance ability by utilizing the technologies such as digital twin and VR/AR from the construction stage. However, the nuclear 3D CAD model, which is used as the base in the latest technology, is heavy due to a large number of facilities per unit space compared to other industrial companies, and it is difficult to directly incorporate the latest technology into the results of CAD programs for design purposes. In this study, in order to improve usability, we tried to lighten the 3D model. First, we analyze the existing nuclear power plant 3D model and draw out the problems and features. Secondly, we derived the factors to consider when we make the 3D CAD models lightweight.

  • PDF

Attribute Data Management for Developing the Database of a 3D Earthwork BIM System (3D 토공 BIM 시스템 데이터베이스 구축을 위한 속성 데이터 관리)

  • Moon, Sungwoo;Seo, Jongwon
    • Journal of KIBIM
    • /
    • v.6 no.4
    • /
    • pp.27-34
    • /
    • 2016
  • A Building Information Model (BIM) is an attempt to simulate the process of building structures in a three-dimensional (3D) digital space. While the technology is usually applied to structured buildings, bridges, and underground facilities, it is rarely applied to an unstructured environment of earthwork operations. If a BIM is used for earthworks, the 3D simulation can be used for construction equipment guidance and earthwork management. This paper presents a real-time, 3D earthwork BIM that provides a 3D graphical simulation of excavators in conjunction with geographic modeling. Developing a real-time, 3D earthwork BIM requires handling a variety of factors, such as geographical information and vehicular movement. This paper mainly focuses on the management of these attributes and provides a database design for storing and retrieving data. In an example application, a prototype of the 3D earthwork BIM is presented to understand what it would provide when used during earthwork operations at a construction site.

A Study on the Establishment of Design and Construction Process Standardization through Building BIM Application Case (건축물 BIM 적용사례를 통한 설계 및 시공프로세스 표준화 수립에 대한 연구)

  • Jeong, Hee-woong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.4
    • /
    • pp.347-358
    • /
    • 2022
  • In order to satisfy the extraction and use of information such as estimates and processes required in the design and construction stages of BIM, which is an expectation of overall construction operation for the design and construction stage of domestic buildings, it is insufficient to supply and apply mobile technologies or terminals. In this paper, standardization of BIM-based processes from the design stage to the construction stage is proposed as an efficient construction system method through mobile-based simulation and test-bed case analysis review. The current status and potential of BIM application were identified through theoretical review of BIM and case studies at home and abroad. In addition, the overall flow of the project and the direction of effective process construction were investigated through each process by 3D, 4D, and 5D execution stage and the role of each collaborator. 4D building process BIM simulation system using mobile was implemented by applying a visualization engine that simulates process information, object information connection module, and related object information. Therefore, it was possible to minimize the possibility of re-construction of the BIM design and construction process model through the visualization of 2D drawings based on the 3D model of the building and the review of errors and interferences in the drawings. In addition, in the implementation of simulation for each process of the construction process through mobile devices, it was possible to support construction progress and process management according to the optimal option selected by the user.

A Development of 3D Computer-Aided Design(CAD) Add-on Program for a Quantity Take-off through the User Needs Analysis (사용자 요구 사항 분석에 따른 물량산출 연동 프로그램 개발)

  • Kim, Seong-Ah;Lee, Jea-Jun;Shin, Tea-Hong;Chin, Sang-Yoon;Kim, Yea-Sang;Choi, Cheol-Ho
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.297-300
    • /
    • 2008
  • Since the Three Dimensional Computer Aided Design(3D CAD) appeared in 1990s, Building Information Modeling(BIM) has got the great issue in the construction project nowadays. BIM is the process of managing and generating building information during life cycle of a construction project. And information can be moved to 3D modeling flexibly in BIM. As a result, a field of estimating has also been doing researches in the calculation of the amount of building materials from 3D modeling. And the Construction Cost Estimating Software which is generally used over the world has been trying to be applied to the Construction project in Korea. But, when we consider the productivity, it is less efficient than the existing way in Korea which use the 2D Drawings when they take off the Quantity. Also, there are lots of difference how to estimate the construction cost. between Korea and the others. Because it is a bit hard to apply the software used in the other countries to the construction project in Korea, people couldn't use it well in the construction project actually. In this study, for developing the appropriate construction cost estimating software rooted in 3D in Korea, we suggest 3D CAD Add-on Program for a Quantity Take-off which can move quantitative information to 3D CAD.

  • PDF

Assessment of Apartment Building Construction Workers' Noise Exposure (아파트 건설노동자 소음 노출평가)

  • Taesun Kang
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.3
    • /
    • pp.308-316
    • /
    • 2023
  • Objectives: The aim of this study is to measure and assess the occupational noise exposure levels among construction workers at apartment building construction sites in South Korea. Methods: Noise exposure assessments were conducted for 139 construction workers across 10 different trades at 53 apartment building construction sites in the northern part of Gyeonggi-do. Assessments were carried out using a noise dosimeter set with a 90 dB criterion, an 80 dB threshold, and a 5 dB exchange rate over a period of more than 6 hours(LMOEL) Results: The mean LMOEL (equivalent continuous noise level over 8 hours) for the 139 dosimeter samples was 87.8 ± 4.3 dBA. The mean noise exposure level for each construction trade, referred to as the trade mean, was also calculated. Significant differences in noise exposure levels were observed between construction trades (ANOVA, p < 0.001). The highest LMOEL values were recorded for concrete chippers (93.2 ± 2.6 dBA), followed by ironworkers (88.4 ± 0.7 dBA), concrete finishers (88.3 ± 2.7 dBA), masonry workers (87.7 ± 1.9 dBA), pile driver operators (85.6 ± 1.7 dBA), concrete carpenters (84.9 ± 2.4 dBA), interior carpenters (83.5 ± 2.1 dBA), and other groups (81.4 ± 2.2 dBA). Conclusions: The findings suggest that nearly all construction workers in this study are at risk of Noise-Induced Hearing Loss (NIHL). Moreover, the study establishes that construction trades can serve as a useful metric for assessing noise exposure levels at apartment construction sites.

Development of Automation Technology for Structural Members Quantity Calculation through 2D Drawing Recognition (2D 도면 인식을 통한 부재 물량 산출 자동화 기술 개발)

  • Sunwoo, Hyo-Bin;Choi, Go-Hoon;Heo, Seok-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.227-228
    • /
    • 2022
  • In order to achieve the goal of cost management, which is one of the three major management goals of building production, this paper introduces an approximate cost estimating automation technology in the design stage as the importance of predicting construction costs increases. BIM is used for accurate estimating, and the quantity of structural members and finishing materials is calculated by creating a 3D model of the actual building. However, only 2D basic design drawings are provided when making an estimating. Therefore, for accurate quantity calculation, digitization of 2D drawings is required. Therefore, this research calculates the quantity of concrete structural members by calculating the area for the recognition area through 2D drawing recognition technology incorporating computer vision. It is judged that the development technology of this research can be used as an important decision-making tool when predicting the construction cost in the design stage. In addition, it is expected that 3D modeling automation and 3D structural analysis will be possible through the digitization of 2D drawings.

  • PDF