• Title/Summary/Keyword: 3D Based

Search Result 15,785, Processing Time 0.041 seconds

High performance 3D pin-by-pin neutron diffusion calculation based on 2D/1D decoupling method for accurate pin power estimation

  • Yoon, Jooil;Lee, Hyun Chul;Joo, Han Gyu;Kim, Hyeong Seog
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3543-3562
    • /
    • 2021
  • The methods and performance of a 3D pin-by-pin neutronics code based on the 2D/1D decoupling method are presented. The code was newly developed as an effort to achieve enhanced accuracy and high calculation performance that are sufficient for the use in practical nuclear design analyses. From the 3D diffusion-based finite difference method (FDM) formulation, decoupled planar formulations are established by treating pre-determined axial leakage as a source term. The decoupled axial problems are formulated with the radial leakage source term. To accelerate the pin-by-pin calculation, the two-level coarse mesh finite difference (CMFD) formulation, which consists of the multigroup node-wise CMFD and the two-group assembly-wise CMFD is implemented. To enhance the accuracy, both the discontinuity factor method and the super-homogenization (SPH) factor method are examined for pin-wise cross-section homogenization. The parallelization is achieved with the OpenMP package. The accuracy and performance of the pin-by-pin calculations are assessed with the VERA and APR1400 benchmark problems. It is demonstrated that pin-by-pin 2D/1D alternating calculations within the two-level 3D CMFD framework yield accurate solutions in about 30 s for the typical commercial core problems, on a parallel platform employing 32 threads.

A Study of Using the Magnifying Lens to Detect the Detailed 3D Data in the Stereo Vision (양안입체시에서 3차원 정밀 데이터를 얻기 위한 확대경 사용에 관한 연구)

  • Cha, Kuk-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.10
    • /
    • pp.1296-1303
    • /
    • 2006
  • The range-based method is easy to get the 3D data in detail, but the image-based is not. In this paper, I suggests the new approach to get the 3D data in detail from the magnified stereo image. Main idea is using the magnifying lens. The magnifying lens not only magnifies the object but also increases the depth resolution. The relation between the amplification of the disparity and the increase of the depth resolution is verified mathematically and the method to improve the original 3D data is suggested.

  • PDF

Application of the Gradient-Based 3D Patch Extraction Method to Terrain and Man-made Objects for Construction of 3D CyberCity (3차원 사이버도시구축을 위한 그래디언트기반 3차원 평면추출기법의 지형 및 인공지물지역에의 적용에 관한 연구)

  • Seo, Su-Young
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.227-229
    • /
    • 2010
  • This study presents an application of the 3D patch extraction method which is based on gradient-driven properties to obtain 3D planar patches over the terrain and man-made objects from lidar data. The method which was exploited in this study is composed of a sequence of processes: segmentation by slope, initiation of triggering patches by mode selection, and expansion of the triggering patches. Since urban areas contain many planar regions over the terrain surface, application of the method has been experimented to extract 3D planar patches not only from non-terrain objects but also from the terrain. The experimental result shows that the method is efficient to acquire 3D planar patches.

  • PDF

Development of 3D Petroglyph VR Contents based on Gesture Recognition (동작인식기반의 3D 암각화 VR 콘텐츠 구현)

  • Jung, Young-Kee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Petroglyphs is an essential part of the worldwide cultural heritage since it plays a key role for the comprehension of prehistoric communities previous to writing. nowadays 3D data are a critical component to permanently record the form of important cultural heritage so that they might be passed down to future generations. Recent 3D scanning technologies allow the generation of very realistic 3D model that can be used for multimedia museum exhibitions to attract the users into the 3D world. In this paper, we develop the 3D petroglyph VR contents based on a novel gesture recognition method. The proposed gesture recognition method can recognizes the movements of the user using 3D depth sensor by comparing with the pre-defined movements. Also this paper presents new approaches for 3D petroglyphs data recording using 3D scanning technology as accurate and non-destructive tools.

Comparison of Orthophotos and 3D Models Generated by UAV-Based Oblique Images Taken in Various Angles

  • Lee, Ki Rim;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.117-126
    • /
    • 2018
  • Due to intelligent transport systems, location-based applications, and augmented reality, demand for image maps and 3D (Three-Dimensional) maps is increasing. As a result, data acquisition using UAV (Unmanned Aerial Vehicles) has flourished in recent years. However, even though orthophoto map production and research using UAVs are flourishing, few studies on 3D modeling have been conducted. In this study, orthophoto and 3D modeling research was performed using various angle images acquired by a UAV. For orthophotos, accuracy was evaluated using a GPS (Global Positioning System) survey that employed VRS (Virtual Reference Station) acquired checkpoints. 3D modeling was evaluated by calculating the RMSE (Root Mean Square Error) of the difference between the outline height values of buildings obtained from the GPS survey to the corresponding 3D modeling height values. The orthophotos satisfied the acceptable accuracy of NGII (National Geographic Information Institute) for a 1/500 scale map from all angles. In the case of 3D modeling, models based on images taken at 45 degrees revealed better accuracy of building outlines than models based on images taken at 30, 60, or 75 degrees. To summarize, it was shown that for orthophotos, the accuracy for 1/500 maps was satisfied at all angles; for 3D modeling, images taken at 45 degrees produced the most accurate models.

Multi-Focusing Image Capture System for 3D Stereo Image (3차원 영상을 위한 다초점 방식 영상획득장치)

  • Ham, Woon-Chul;Kwon, Hyeok-Jae;Enkhbaatar, Tumenjargal
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.2
    • /
    • pp.118-129
    • /
    • 2011
  • In this paper, we suggest a new camera capturing and synthesizing algorithm with the multi-captured left and right images for the better comfortable feeling of 3D depth and also propose 3D image capturing hardware system based on the this new algorithm. We also suggest the simple control algorithm for the calibration of camera capture system with zooming function based on a performance index measure which is used as feedback information for the stabilization of focusing control problem. We also comment on the theoretical mapping theory concerning projection under the assumption that human is sitting 50cm in front of and watching the 3D LCD screen for the captured image based on the modeling of pinhole Camera. We choose 9 segmentations and propose the method to find optimal alignment and focusing based on the measure of alignment and sharpness and propose the synthesizing fusion with the optimized 9 segmentation images for the best 3D depth feeling.

Three Dimensional Last Data Generation System Utilizing Cross Sectional Free Form Deformation (단면 분할 FFD를 이용한 3D 라스트 데이터 생성시스템 개발)

  • Kim, Si-Kyung;Park, In-Duck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.768-773
    • /
    • 2005
  • A new approach for human foot modelling and last design based on the cross sectional method is presented in this paper. The proposed last design method utilizes the dynamic trimmed parametric patches for the foot 3D data and last 3D data. The cross section a surface of 3D foot for the 3D last, design modeling of free form geometric last shapes. The proposed last design scheme wraps the 3D last data surrounding the measured 3D foot data with the effect of deforming the last design rule The last design rule of the FFD is constructed on the FFD lattice based on foot-last shape analysis. In addition, the control points of FFD lattice are constructed with cross sectional data interpolation methods from the a finite set of 3D foot data. The deformed 3D last result obtained from the proposed FFD is saved as a 3D dxf foot data. The experimental results demonstrate that the last designed with the proposed scheme has good performance.

The Development of Authoring Tool for 3D Virtual Space Based on a Virtual Space Map (가상공간지도 기반의 3차원 가상공간 저작도구의 개발)

  • Jung Il-Hong;Kim Eun-Ji
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.177-186
    • /
    • 2006
  • This paper presents the development of a certain highly efficient authoring tool for constructing realistic 3D virtual space using image-based rendering techniques based on a virtual space map. Unlike conventional techniques such as TIP, for constructing a small 3D virtual space using single image, the authoring tool developed herein produces a wide 3D virtual space using multiple images. This tool is designed for constructing each small 3D virtual space for each input image, and for interconnecting these 3D virtual spaces into a wide 3D virtual space using a virtual space map. The map consists of three elements such as specific room, link point and passageway, and three directions. It contains various information such as the connection structure, the navigation information and so on. Also, the tool contains a user interface that let users construct the wide 3D virtual space easily.

  • PDF

Study of Model Based 3D Facial Modeling for Virtual Reality (가상현실에 적용을 위한 모델에 근거한 3차원 얼굴 모델링에 관한 연구)

  • 한희철;권중장
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.193-196
    • /
    • 2000
  • In this paper, we present a model based 3d facial modeling method for virtual reality application using only one front of face photography. We extract facial feature using facial photography and modify mesh of the basic 3D model by the facial feature. After this , We use texture mapping for more similarity. By experiment, we know that the modeling technic is useful method for Movie, Virtual Reality Application, Game , Clothing Industry , 3D Video Conference.

  • PDF

Face Representation Method Using Pixel-to-Vertex Map(PVM) for 3D Model Based Face Recognition (3차원 얼굴인식을 위한 픽셀 대 정점 맵 기반 얼굴 표현방법)

  • Moon, Hyeon-Jun;Jeong, Kang-Hun;Hong, Tae-Hwa
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.1031-1032
    • /
    • 2006
  • A 3D model based face recognition system is generally inefficient in computation time because 3D face model consists of a large number of vertices. In this paper, we propose a novel 3D face representation algorithm to reduce the number of vertices and optimize its computation time.

  • PDF