• Title/Summary/Keyword: 3D 지형스캐너

Search Result 22, Processing Time 0.029 seconds

A Study for the Border line Extraction technique of City Spatial Building by LiDAR Data (LiDAR 데이터와 항공사진의 통합을 위한 사각 빌딩의 경계점 설정)

  • Yeon, Sang-Ho;Lee, Young-Wook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.27-29
    • /
    • 2007
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.

  • PDF

A Study on the Selection and Applicability Analysis of 3D Terrain Modeling Sensor for Intelligent Excavation Robot (지능형 굴삭 로봇의 개발을 위한 로컬영역 3차원 모델링 센서 선정 및 현장 적용성 분석에 관한 연구)

  • Yoo, Hyun-Seok;Kwon, Soon-Wook;Kim, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2551-2562
    • /
    • 2013
  • Since 2006, an Intelligent Excavation Robot which automatically performs the earth-work without operator has been developed in Korea. The technologies for automatically recognizing the terrain of work environment and detecting the objects such as obstacles or dump trucks are essential for its work quality and safety. In several countries, terrestrial 3D laser scanner and stereo vision camera have been used to model the local area around workspace of the automated construction equipment. However, these attempts have some problems that require high cost to make the sensor system or long processing time to eliminate the noise from 3D model outcome. The objectives of this study are to analyze the advantages of the existing 3D modeling sensors and to examine the applicability for practical use by using Analytic Hierarchical Process(AHP). In this study, 3D modeling quality and accuracy of modeling sensors were tested at the real earth-work environment.

Application of Photo-realistic Modeling and Visualization Using Digital Image Data in 3D GIS (디지털 영상자료를 이용한 3D GIS의 사실적 모델링 및 가시화)

  • Jung, Sung-Heuk;Lee, Jae-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.73-83
    • /
    • 2008
  • For spatial analysis and decision-making based on territorial and urban information, technologies on 3D GIS with digital image data and photo-realistic 3D image models to visualize 3D modeling are being rapidly developed. Currently, satellite images, aerial images and aerial LiDAR data are mostly used to build 3D models and textures from oblique aerial photographs or terrestrial photographs are used to create 3D image models. However, we are in need of quality 3D image models as current models cannot express topographic and features most elaborately and realistically. Thus, this study analyzed techniques to use aerial photographs, aerial LiDAR, terrestrial photographs and terrestrial LiDAR to create a 3D image model with artificial features and special topographic that emphasize spatial accuracy, delicate depiction and photo-realistic imaging. A 3D image model with spatial accuracy and photographic texture was built to be served via 3D image map services systems on the Internet. As it was necessary to consider intended use and display scale when building 3D image models, in this study, we applied the concept of LoD(Level of Detail) to define 3D image model of buildings in five levels and established the models by following the levels.

Development of Virtual Campus Information System using Interactive Virtual Reality Technology (상호작용 VR 기술을 이용한 가상 캠퍼스 안내 시스템 구현)

  • Kim, Jong-Nam;Na, Kil-Hang;Kim, Jong-Heon;Kim, Gyeong-Eop;Jung, Young-Kee
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.779-784
    • /
    • 2008
  • 가상현실 시스템에서 체험자가 현실과 같은 몰입을 느끼기 위해서는 하드웨어를 통한 가상환경 구축과 체험자와의 상호작용이 중요하다. 본 논문에서는 위치 추적 시스템(Motion Tracking System), Wand(3D Mouse) 및 HoloPoint 등 다양한 VR 인터페이스를 통해 체험자의 움직임, 위치, 동작을 인식하고 대형 멀티 디스플레이 시스템을 통해 입체영상을 제공하는 가상환경을 구축하고 체험자가 원하는 정보를 상호작용(Interaction)으로 제공할 수 있는 가상 캠퍼스 안내 시스템을 구현하고자 한다. 가상 캠퍼스 구축은 캠퍼스의 지형, 건물 및 구조물들의 정확한 형상을 얻기 위해 3D 스캐너를 이용하였고 획득된 데이터는 일련의 과정들을 거쳐 3D 모델로 생성된다. 이렇게 생성된 모델을 재배치 및 최적화하기 위해 모델링 소프트웨어를 사용하였다. 구축된 가상 캠퍼스와 위치 추적 시스템 및 Wand의 연동을 위해 VR 프로그래밍 하여 체험자의 움직임 및 동작을 콘텐츠에 그대로 적용시켰다. 여기에 키오스크 유형의 HoloPoint를 이용하여 체험자의 손동작으로 상호작용하는 안내시스템도 구축하였다. 상호작용 가능한 가상캠퍼스 안내 시스템은 가상현실 시스템 구축에 대한 또 다른 방법과 활용 예를 제시함으로써 가상전시관 및 가상체험관 등에 활용될 수 있을 것으로 기대된다.

  • PDF

A Study on the Construction of 3D Cadastral Information by Mobile Mapping System (차량 기반 멀티센서 측량시스템을 이용한 3차원 지적정보 구축에 관한 연구)

  • Min, Kwan Sik;Kim, Jae Myeong;Park, Byung Moon
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In this paper, we suggested plan that utilize the mobile mapping system data for constructing 3D cadastral information of roads and buildings effectively. 3D cadastral information means conflation of existing cadastral information and spatial information. It also means 3D land management that can register and manage various spatial information with land information effectively. Technically, geometry information and attribute information by image or radar scanner and location information of geographic features calculated by GPS/INS integration technology are useful for constructing 3D cadastral information included in buildings and features on the ground. As a result, the application of mobile mapping system for constructing 3D cadastral information will make a scientification and enhancing of the land information.

A Study on Airborne LiDAR System Calibration and Accuracy Evaluation (항공LiDAR 시스템 검정 및 정확도 평가 연구)

  • Choi, Yun-Soo;Kong, In-Ku;Lee, Kang-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.359-366
    • /
    • 2005
  • Airborne LiDAR integrated with on-board GPS/INS and scanning technology is a state-of the-art system for direct 3D geo-spatial data acquisition. In this study, LiDAR data were calibrated using ground points in calibration site for the higher system accuracy. The accuracy results are ${\pm}15{\sim}30\;cm$ in horizontal and ${\pm}15\;cm$ in vertical. The results show that LiDAR system has capability for precise DEM and contour generation, 3D urban modeling and engineering design.

A Study on 3D Scan Technology for Find Archetype of Youngbeokji in Seongnagwon Garden (성락원 영벽지의 원형 파악을 위한 3D 스캔기술 연구)

  • Lee, Won-Ho;Kim, Dong-Hyun;Kim, Jae-Ung;Park, Dong-Jin
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.95-105
    • /
    • 2013
  • This study on circular identifying purposes was performed of Youngbeokji space located in Seongnagwon(Scenic Sites No.35). Through the data acquisition of 3D high precision, such as the surrounding terrain of the Youngbeokji. The results of this study is summarized like the following. First, the purpose of the stone structures and structure within the Youngbeokji search is an important clue to find that earlier era will be a prototype. 3D scan method of enforcement is searching the whole structure, including the surrounding terrain and having the easy way. Second, the measurement results are as follows. Department of bedrock surveyed from South to North was measured by 7,665mm. From East to West was measured at 7,326mm. The size of the stone structures, $1,665mm{\times}1,721mm$ in the form of a square. Its interior has a diameter of 1, 664mm of hemispherical form. In the lower portion of the rock masses in the South to the North, has fallen out of the $1,006mm{\times}328mm$ scale traces were discovered. Third, the Youngbeokji recorded in the internal terrain Multiresolution approach. After working with the scanner and scan using the scan data, broadband, to merge. Polygon Data conversion to process was conducted and mash as fine scan data are converted to process data. High resolution photos obtained through the creation of 3D terrain data overlap and the final result. Fourthly, as a result of this action, stone structure West of the waterway back outgoing times oil was confirmed. Bangjiwondo is estimated to be seokji of structure hydroponic facility confirmed will artificially carved in the bedrock. As a result of this and the previous situation of the 1960s could compare data was created. This study provides 3D precision ordnance through the acquisition of the data. Excavations at the circle was able to preserve in perpetuity as digital data. In the future, this data is welcome to take a wide variety of professionals. This is the purpose of this is to establish foundations and conservation management measures will be used. In addition, The new ease of how future research and 3D scan unveiled in the garden has been used in the study expect.

Key Point Extraction from LiDAR Data for 3D Modeling (3차원 모델링을 위한 라이다 데이터로부터 특징점 추출 방법)

  • Lee, Dae Geon;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.479-493
    • /
    • 2016
  • LiDAR(Light Detection and Ranging) data acquired from ALS(Airborne Laser Scanner) has been intensively utilized to reconstruct object models. Especially, researches for 3D modeling from LiDAR data have been performed to establish high quality spatial information such as precise 3D city models and true orthoimages efficiently. To reconstruct object models from irregularly distributed LiDAR point clouds, sensor calibration, noise removal, filtering to separate objects from ground surfaces are required as pre-processing. Classification and segmentation based on geometric homogeneity of the features, grouping and representation of the segmented surfaces, topological analysis of the surface patches for modeling, and accuracy assessment are accompanied by modeling procedure. While many modeling methods are based on the segmentation process, this paper proposed to extract key points directly for building modeling without segmentation. The method was applied to simulated and real data sets with various roof shapes. The results demonstrate feasibility of the proposed method through the accuracy analysis.

A Study on Landscape Management Techniques of Cultural Heritage Designated Area Using 3D Mapping Method (3D맵핑을 이용한 문화재 지정구역 경관관리기법 연구)

  • Kim, Jae-Ung;Lee, Won-Ho;Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.1
    • /
    • pp.97-108
    • /
    • 2018
  • The purpose of this study is to propose the construction of a visibility analysis model, which is the basis of the analysis for landscape management on the heritage sites such as historic villages and scenic sites. Results of the visibility analysis using DEM and the visibility analysis of DSM based on 3D mapping data are compared as follows: Precision level of the extracted data was confirmed to be less than 6.5cm, based on RTK survey results produced by constructing orthoimage data and DSM from the digital data of 2cm-class GSD(Ground Sample Distance) obtained by using a small UAV(Unmanned Aerial Vehicle). As a result of comparing the visibility analysis data of Digital Surface Model (DSM) using a small UAV with Digital Elevation Model(DEM) applying the height of the building to the Digital Topographic Map, it was confirmed that more realistic visibility analysis can be accomplished by applying DSM, as the structures such as fences, trees, and houses are reflected in the topographic data. The visibility analysis model using the 3D mapping technique can efficiently obtain the constantly changing topographic information when needed, by immediately constructing the data by utilizing a small UAV. It seems to be possible to propose a reasonable analysis result for preservation management such as landscape evaluation of cultural property.

3 Dimensional Changes of Bedrock Surface with Physical Modelling of Abrasion (마식에 의한 기반암면의 표면 변화에 대한 실험 연구)

  • Kim, Jong-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.506-525
    • /
    • 2007
  • Incision into bedrock channel is the primary control of landform evolution, but research into bedrock incision process stagnated for long time. Due to the scaling problem of the application of results from flume studies to bedrock channel, there is a strong need to simulate the bedrock incision process with more realistic models. As a part of investigation into controls of bedrock channel incision, three-dimensional changes of rock surface with abrasion was investigated with physical modelling. 18 rock plates were abraded with various sediment particle size and sediment load and abraded surfaces of the plates were scanned with high resolution 3-D scanner. To identify the spatial pattern of erosion of the rock plates, various methods were used. There was no synthetic or holistic method that showed all features of bedrock plate produced by abrasion, so each plate was analyzed using some available methods. Contour maps, shaded relief maps and profiles show that abrasion concentrated on the centre of plate (cross profile) and upstream and downstream edges (longitudinal profile) and eroded area extended inwards. It also found that the cracks and boundaries of forming materials easily eroded than other parts. Changing patterns of surface roughness were investigated with profiles, regression analysis and spectral analysis. Majority of plates showed decrease in small-scale roughness, but it depends on microstructures of the plates rather than general hardness or other factors. SEM inspection results supported this idea.