• Title/Summary/Keyword: 3D 모델 재구성

Search Result 97, Processing Time 0.028 seconds

The Measurement of Femoral Neck Anteversion by 3D Modeling of Femoral Major Axes (대퇴골 주요축의 3차원 모델링에 의한 전염각의 측정)

  • Kim, Jun-Sik;Kim, Seon-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.341-350
    • /
    • 1998
  • The accurate measurement of the femoral anteversion is important for the derotational osteotomy. To estimate femoral anteversion, following three major parameters are required; the neck axis, the long axis, and the knee axis. Conventional methods on the basis of 2D images are ambiguous to determine these major axes. As the femur has a complex 3 dimensional structure, the 3 dimensional model should be applied for accurate and reliable measurement of femoral anteversion. In this thesis, we model femur and define three parameters. The neck axis is defined from the femoral head and neck model. The long axis is determined from the cylindrical model of the femoral shaft. The knee axis is also determined from the model of femoral condyles. According to the definition of the femoral anteversion, the femoral anteversion is efficiently estimated from these models. 20 specimens were tested by the conventional 2D imaging method and 3D imaging method witch was developed by authors and the new 3D modeling method. The study provides accurate, fast and human factor free measurement for femoral anteversion.

  • PDF

Volume Reconstruction by Cellboundary Representation for Medical Volume Visualization (의료영상 가시화를 위한 셀 경계 방식 체적 재구성 방법)

  • Choi, Young-Kyu;Lee, Ee-Taek
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.3
    • /
    • pp.235-244
    • /
    • 2000
  • This paper addresses a new method for constructing surface representation of 3D structures from a sequence of tomographic cross-sectional images, Firstly, we propose cell-boundary representation by transforming the cuberille space into cell space. A cell-boundary representation consists of a set of boundary cells with their 1-voxel configurations, and can compactly describe binary volumetric data. Secondly, to produce external surface from the cell-boundary representation, we define 19 modeling primitives (MP) including volumetric, planar and linear groups. Surface polygons are created from those modeling primitives using a simple table look-up operation. Comparing with previous method such as Marching Cube or PVP algorithm, our method is robust and does not make any crack in resulting surface model. Hardware implementation is expected to be easy because our algorithm is simple(scan-line), efficient and guarantees data locality in computation time.

  • PDF

CGS System based on Three-Dimensional Character Modeling I (Part1:About Non-Digital Process) (3차원 캐릭터 모델기반 CGS System 구축 I (Part1:Non-Digital Process에 관하여))

  • Cho, Dong-Min
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1592-1600
    • /
    • 2008
  • This study is to help creative idea generation based on the theory of the 'reconstruction of character shape image elements', and aims to extrusion of creative and diverse shapes with combination of image elements upon computing creative image generation. In order to suggest the design generation methodology for the maximization of idea generation ability and to overcome restriction of thinking out of existing idea generation methodology, it has suggested the CGS(Character Generation System) that is a creative idea generation methodology identified and complemented the problem of the existing computerized idea generation(PDS with Proportion) method out of the preceded studies on the creative idea generation methodologies. this study is expected to have effectives as one method for idea generation or creative image generation assistance during the 3D character development process, and to serve as an assistance to overcome the restriction of the character shape image generation through diverse idea generations.

  • PDF

Prediction of Soil-Water Characteristic Curve and Relative Permeability of Jumunjin Sand Using Pore Network Model (공극 네트워크 모델을 이용한 주문진표준사의 함수특성곡선 및 상대투수율 예측에 관한 연구)

  • Suh, Hyoung Suk;Yun, Tae Sup;Kim, Kwang Yeom
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • This study presents the numerical results of soil-water characteristic curve for sandy soil by pore network model. The Jumunjin sand is subjected to the high resolution 3D X-ray computed tomographic imaging and its pore structure is constructed by the web of pore body and pore channel. The channel radius, essential to the computation of capillary pressure, is obtained based on the skeletonization and Euclidean Distance transform. The experimentally obtained soil-water characteristic curve corroborates the numerically estimated one. The pore channel radius defined by minimum radii of pore throat results in the slightly overestimation of air entry value, while the overall evolution of capillary pressure resides in the acceptable range. The relative permeability computed by a series of suggested models runs above that obtained by pore network model at high degree of saturation.

The Pattern of Initial Displacement in Lingual Lever Arm Traction of 6 Maxillary Anterior Teeth According to Different Material Properties: 3-D FEA (유한요소모델에서 레버암을 이용한 상악 6전치 설측 견인 시 초기 이동 양상)

  • Choi, In-Ho;Cha, Kyung-Suk;Chung, Dong-Hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.213-230
    • /
    • 2008
  • The aim of this study was to analyze the initial movement and the stress distribution of each tooth and periodontal ligament during the lingual lever-arm retraction of 6 maxillary incisors using FEA. Two kinds of finite element models were produced: 2-properties model (simple model) and 24-properties model (multi model) according to the material property assignment. The subject was an adult male of 23 years old. The DICOM images through the CT of the patient were converted into the 3D image model of a skull using the Mimics (version 10.11, Materialise's interactive Medical Image Control System, Materialise, Belgium). After series of calculating, remeshing, exporting, importing process and volume mesh process was performed, FEA models were produced. FEA models are consisted of maxilla, maxillary central incisor, lateral incisor, canine, periodontal ligaments and lingual traction arm. The boundary conditions fixed the movements of posterior, sagittal and upper part of the model to the directions of X, Y, Z axis respectively. The model was set to be symmetrical to X axis. Through the center of resistance of maxilla complex, a retraction force of 200g was applied horizontally to the occlusal plane. Under this conditions, the initial movements and stress distributions were evaluated by 3D FEA. In the result, the amount of posterior movement was larger in the multi model than in the simple model as well as the amount of vertically rotation. The pattern of the posterior movement in the central incisors and lateral incisors was controlled tipping movement, and the amount was larger than in the canine. But the amount of root movement of the canine was larger than others. The incisor rotated downwardly and the canines upwardly around contact points of lateral incisor and canine in the both models. The values of stress are similar in the both simple and multi model.

Interactive Virtual Anthroscopy Using Isosurface Raycasting Based on Min-Max Map (최대-최소맵 기반 등위면 광선투사법을 이용한 대화식 가상 관절경)

  • 임석현;신병석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.103-109
    • /
    • 2004
  • A virtual arthroscopy is a simulation of optical arthroscopy that reconstructs anatomical structures from tomographic images in joint region such as a knee, a shoulder and a wrist. In this paper, we propose a virtual arthroscopy based on isosurface raycasting, which is a kind of volume rendering methods for generating 3D images within a short time. Our method exploits a spatial data structure called min-max map to produce high-quality images in near real-time. Also we devise a physically-based camera control model using potential field. So a virtual camera can fly through in articular cavity without restriction. Using the high-speed rendering method and realistic camera control model, we developed a virtual arthroscopy system.

Morphological Analysis of Hydraulically Stimulated Fractures by Deep-Learning Segmentation Method (딥러닝 기반 균열 추출 기법을 통한 수압 파쇄 균열 형상 분석)

  • Park, Jimin;Kim, Kwang Yeom ;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.17-28
    • /
    • 2023
  • Laboratory-scale hydraulic fracturing experiments were conducted on granite specimens at various viscosities and injection rates of the fracturing fluid. A series of cross-sectional computed tomography (CT) images of fractured specimens was obtained via a three-dimensional X-ray CT imaging method. Pixel-level fracture segmentation of the CT images was conducted using a convolutional neural network (CNN)-based Nested U-Net model structure. Compared with traditional image processing methods, the CNN-based model showed a better performance in the extraction of thin and complex fractures. These extracted fractures extracted were reconstructed in three dimensions and morphologically analyzed based on their fracture volume, aperture, tortuosity, and surface roughness. The fracture volume and aperture increased with the increase in viscosity of the fracturing fluid, while the tortuosity and roughness of the fracture surface decreased. The findings also confirmed the anisotropic tortuosity and roughness of the fracture surface. In this study, a CNN-based model was used to perform accurate fracture segmentation, and quantitative analysis of hydraulic stimulated fractures was conducted successfully.

Review of recent developments for intra-oral scanners (현재 존재하는 구강 스캐너에 대한 고찰)

  • Choi, Jong-Hoon;Lim, Young-Jun;Lee, Won-Jin;Han, Jung-Suk;Lee, Seung-Pyo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.2
    • /
    • pp.112-125
    • /
    • 2015
  • Making a model that is an accurate replica of the oral structure requires precision and efficiency. Nowadays, rapid technological advances bring digitalization in dentistry. One of the most important works in digital dentistry is three-dimensional modeling of the oral cavity and digitizing the 3D data. Among the three components of CAD/CAM, (1) data capture component (digitizers), (2) design component (CAD software), (3) manufacturing component (CAM), the basic component that has a significant impact on the other processes is the data capture component, i.e. intra-oral scanners. This literature review discusses the principles and clinical use of intra-oral scanners in dentistry based on recent publications of the past 5 years using the PubMed and Google Scholar databases.

Numerical Analysis of Intense Electric Current Pulse to Disperse Shaped Charge Metal Jet (성형작약탄 금속제트 산란을 위한 대전류 펄스의 수치해석적 연구)

  • Park, Hyeong Gyu;Kim, Dong Kyu;Kim, Si Woo;Joo, Jae Hyun;Song, Woo Jin;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • The electromagnetic force induced by an intense electric current pulse, which generates an electromagnetic field around the metal jet originating from a shaped charge, can disperse and scatter the high-speed metal jet. An electric device consisting of an RLC circuit applies an intense electric current pulse that flows in the circuit while the metal jet passes between two electrodes. In this study, the metal jet formation was simulated using the ALE technique in 2-D, and a 3-D finite element model was mapped using 2-D simulation results to induce the electric current directly. The deformed shapes of the metal jet and the electromagnetic force were calculated using a finite element analysis by inducing the electric current directly, and the major parameters of the intense electric current pulse for breaking up the metal jet were examined.

Adaptive Optimal Thresholding for the Segmentation of Individual Tooth from CT Images (CT영상에서 개별 치아 분리를 위한 적응 최적 임계화 방안)

  • Heo, Hoon;Chae, Ok-Sam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.163-174
    • /
    • 2004
  • The 3D tooth model in which each tooth can be manipulated individualy is essential component for the orthodontic simulation and implant simulation in dental field. For the reconstruction of such a tooth model, we need an image segmentation algorithm capable of separating individual tooth from neighboring teeth and alveolar bone. In this paper we propose a CT image normalization method and adaptive optimal thresholding algorithm for the segmenation of tooth region in CT image slices. The proposed segmentation algorithm is based on the fact that the shape and intensity of tooth change gradually among CT image slices. It generates temporary boundary of a tooth by using the threshold value estimated in the previous imge slice, and compute histograms for the inner region and the outer region seperated by the temporary boundary. The optimal threshold value generating the finnal tooth region is computed based on these two histogram.