DOI QR코드

DOI QR Code

Review of recent developments for intra-oral scanners

현재 존재하는 구강 스캐너에 대한 고찰

  • Choi, Jong-Hoon (Department of Dentistry, School of Dentistry, Seoul National University) ;
  • Lim, Young-Jun (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Won-Jin (Department of Oral Maxillofacial Radiology, School of Dentistry, Seoul National University) ;
  • Han, Jung-Suk (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Seung-Pyo (Department of Oral Anatomy, School of Dentistry, Seoul National University)
  • 최종훈 (서울대학교 치의학대학원) ;
  • 임영준 (서울대학교 치의학대학원 치과보철학교실) ;
  • 이원진 (서울대학교 치의학대학원 구강악안면방사선학교실) ;
  • 한중석 (서울대학교 치의학대학원 치과보철학교실) ;
  • 이승표 (서울대학교 치의학대학원 구강해부학교실)
  • Received : 2015.02.12
  • Accepted : 2015.05.31
  • Published : 2015.06.30

Abstract

Making a model that is an accurate replica of the oral structure requires precision and efficiency. Nowadays, rapid technological advances bring digitalization in dentistry. One of the most important works in digital dentistry is three-dimensional modeling of the oral cavity and digitizing the 3D data. Among the three components of CAD/CAM, (1) data capture component (digitizers), (2) design component (CAD software), (3) manufacturing component (CAM), the basic component that has a significant impact on the other processes is the data capture component, i.e. intra-oral scanners. This literature review discusses the principles and clinical use of intra-oral scanners in dentistry based on recent publications of the past 5 years using the PubMed and Google Scholar databases.

구강 내의 모습을 재현하는 복제모델을 만드는 것은 치과 진료에서 가장 중요한 과정이며 정확성과 효율성이 동시에 만족되어야 하는 과정이다. 현재 기술이 발전함에 따라 치과 진료에서도 디지털화가 이루어지고 있다. 이러한 것을 가능하게 하는 가장 중요한 작업 중 하나가 바로 구강 내의 모습을 3차원적으로 재구성하는 디지털화이다. CAD/CAM 시스템의 3가지 성분 (1) data capture component (digitizers), (2) design component (CAD software), (3) manufacturing component (CAM)중 가장 기본이 되며 뒤의 과정에 막대한 영향을 끼치는 것이 data capture component 즉 구강 스캐너이다. 이 논문은 Pubmed와 Google Scholar에서 최근 5년 전 연구 논문들을 기초로 하여, 각각의 스캐너의 구동원리와 스캐너들 간의 정확성, 현재 구강 스캐너가 치과 영역에서 적용되고 있는 분야와 그 정도를 분석하였다.

Keywords

References

  1. Ali P, Behrai T. A reliable 3D laser triangulationbased scanner with a new simple but accurate procedure for finding scanner parameters. J Am Sci 2010;6:80-5.
  2. Kostiukova VV, Riakhovski AN, Ukhanov MM. A Comparative Analysis Of Intra-oral 3d digital scanners for restorative dentistry. Stomatologiia (Mosk) 2014;93:53-9.
  3. Franca JGDM, Gazziro MA, Saito JH. A 3D scanning system based on laser triangulation and variable field of view. IEEE Intl Conf 2005;1:425-8.
  4. Wang L, Bo M, Gao J, Ou CS. A Novel double triangulation 3D camera design. IEEE Intl Conf Info 2006:877-82.
  5. El-Hakim SF, Beraldin JA, Blais F. Comparative evaluation of the performance of passive and active 3D vision systems. Proc. SPIE 2646, Digital Photogrammetry and Remote Sensing '95, 14 (December 1, 1995); doi:10.1117/12.227862.
  6. Lombardo V, Marzulli T, Pappalettere C, Sforza P. A time-of-scan laser triangulation technique for distance measurements. Opt Laser Eng 2003;39:247-54. https://doi.org/10.1016/S0143-8166(01)00121-X
  7. Logozzo S, Zanetti EM, Franceschini G, Kilpela A, Makynen A. Recent advances in dental optics - Part I: 3D intra-oral scanners for restorative dentistry. Opt Laser Eng 2014;54:203-21. https://doi.org/10.1016/j.optlaseng.2013.07.017
  8. Birnbaum NS, Aaronson HB, Stevens C, Cohen B. 3D digital scanners: a high tech approach to more accurate dental impressions. Inside Dent 2009;5:70-4.
  9. Thiel F, Pfeiffer J, Fornoff P. Apparatus and method for optical 3D measurement. US Patent 2011/7986415.
  10. Thiel E, Pfeiffer J, Fornoff P. Apparatus and method for optical 3D measurement. International Publication WO Patent 2008/7986415 B2.
  11. Schmidt V. 3D dental camera for recording surface structures of a measuring object by means of triangulation. International Publication WO Patent 2010/012838 A1.
  12. Pawley JB. Handbook of biological confocal microscopy. 3rd ed. NewYork; Springer; 2006.
  13. Fellers TJ, Davidson MW. Olympus FluoView Resource Center: introduction to confocal microscopy. Available from: http://www.olympusconfocal.com/theory/confocalintro.html (updated 2014 Oct 15).
  14. Babayoff N, Glaser-Inbari I. Imaging a three dimensional structure by confocal focusing an array of light beams. International Publication WO Patent 2000/08415.
  15. Harrison L. Digital impressions competition booming, Available from: http://www.drbicuspid.com/index.aspx?sec=sup&sub=rst&pag=dis&ItemID=301650 (updated 2014 Oct 15).
  16. Babayoff N, Glaser-Inbari I. Method and apparatus for imaging three-dimensional structure. US Patent 2007/0109559.
  17. Babayoff N. Method and apparatus for colour imaging a three dimensional structure. US Patent 2010/0208275 A1.
  18. Jacobson B. Taking the headache out of impressions. Dent Today 2007;26:74,76.
  19. 3Shape. 3Shape TRIOSs digital impression solution. Available from: http://www.3shapedental.com (updated 2014 Oct 15).
  20. Fisker R, Ojelund H, Kjær R, VanDerPoel M, Qazi AA, Hollenbeck KJ. Focus scanning apparatus. International Publication WO Patent 2010/145669A1.
  21. Heber S. 3d image reconstruction using active wavefront sampling. Available from: http://rvlab.icg.tugraz.at/project_page/project_wavefront/project_wavefront.htm (updated 2014 Oct 15).
  22. Fasbinder DJ. Digital workflow for the Lava C.O.S system. Inside Dent 2009;5.
  23. 3M ESPE. $Lava^{TM}$ ScanSToptical scanning system. Available from: http://solutions.3m.co.za/wps/portal/3M/en_ZA/3M_ESPE/DentalManufacturers/Products/DigitalDentistry/DentalTechnician/DentalCAD-CAM/DentalScanners (updated 2014 Oct 15).
  24. Hart DP, Lammerding J, Rohaly J. 3-D imaging system. US Patent 2004/0155975 A1.
  25. Kondon N. Making the switch to the Lava C.O.S. Available from: http://www.benco.com/About/News/Making_the_Switch_to_the_Lava_C_O_S_.aspx (updated 2014 Oct 15).
  26. An S, Kim S, Choi H, Lee JH, Moon HS. Evaluating the marginal fit of zirconia copings with digital impressions with an intra-oral digital scanner. J Prosthet Dent 2014;112:1171-5. https://doi.org/10.1016/j.prosdent.2013.12.024
  27. Ng J, Ruse D, Wyatt C. A comparison of the marginal fit of crowns fabricated with digital and conventional methods. J Prosthet Dent 2014;112:555-60 https://doi.org/10.1016/j.prosdent.2013.12.002
  28. Lee WS, Kim WC, Kim HY, Kim WT, Kim JH. Evaluation of different approaches for using a laser scanner in digitization of dental impressions. J Adv Prosthodont 2014;6:22-9. https://doi.org/10.4047/jap.2014.6.1.22
  29. Keul C, Stawarczyk B, Erdelt KJ, Beuer F, Edelhoff D, Guth JF. Fit of 4-unit FDPs made of zirconia and CoCr-alloy after chairside and labside digitalization- a laboratory study. Dent Mater 2014;30:400-7. https://doi.org/10.1016/j.dental.2014.01.006
  30. Syrek A, Reich G, Ranftl D, Klein C, Cerny B, Brodesser J. Clinical evaluation of all-ceramic crowns fabricated from intra-oral digital impressions based on the principle of active wavefront sampling. J Dent 2010;38:553-9. https://doi.org/10.1016/j.jdent.2010.03.015
  31. Almeida e Silva JS, Erdelt K, Edelhoff D, Araujo E, Stimmelmayr M, Vieira LC, Guth JF. Marginal and internal fit of four-unit zirconia fixed dental prostheses based on digital and conventional impression techniques. Clin Oral Investig 2014;18:515-23. https://doi.org/10.1007/s00784-013-0987-2
  32. Baig MR, Tan KB, Nicholls JI. Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. J Prosthet Dent 2010;104:216-27. https://doi.org/10.1016/S0022-3913(10)60128-X
  33. Wang YG, Xing YX, Sun YC, Zhao YJ, Lu PJ, Wang Y. Preliminary evaluation of clinical effect of computer aided design and computer aided manufacture zirconia crown. Zhonghua Kou Qiang Yi Xue Za Zhi 2013;48:355-8.
  34. Scotti R, Cardelli P, Baldissara P, Monaco C. WITHDRAWN: Clinical fitting of CAD/CAM zirconia single crowns generated from digital intraoral impressions based on active wavefront sampling. J Dent 2011 Oct 17.[Epub ahead of print]
  35. Tamim H, Skjerven H, Ekfeldt A, Roold HJ. Clinical evaluation of CAD/CAM metal-ceramic posterior crowns fabricated from intra-oral digital impressions. Int J Prosthodont 2014;27:331-7. https://doi.org/10.11607/ijp.3607
  36. Brawek PK, Wolfart S, Endres L, Kirsten A, Reich S. The clinical accuracy of single crowns exclusively fabricated by digital workflow-the comparison of two systems. Clin Oral Investig 2013;17:2119-25. https://doi.org/10.1007/s00784-013-0923-5
  37. Seelbach P, Brueckel C, Wostmann B. Accuracy of digital and conventional impression techniques and workflow. Clin Oral Investig 2013;17:1759-64. https://doi.org/10.1007/s00784-012-0864-4
  38. Re D, Cerutti F, Augusti G, Cerutti A, Augusti D. Comparison of marginal fit of Lava CAD/CAM crown-copings with two finish lines. Int J Esthet Dent 2014;9:426-35.
  39. Souza RO, Ozcan M, Pavanelli CA, Buso L, Lombardo GH, Michida SM, Mesquita AM, Bottino MA. Marginal and internal discrepancies related to margin design of ceramic crowns fabricated by a CAD/CAM system. J Prosthodont 2012;21:94-100. https://doi.org/10.1111/j.1532-849X.2011.00793.x
  40. Renne W, McGill ST, Forshee KV, DeFee MR, Mennito AS. Predicting marginal fit of CAD/CAM crowns based on the presence or absence of common preparation errors. J Prosthet Dent 2012;108:310-15. https://doi.org/10.1016/S0022-3913(12)60183-8
  41. Gimenez, B, Ozcan, M, Martinez-Rus, F, Pradies G. Accuracy of a digital impression system based on parallel confocal laser technology for implants with consideration of operator experience and implant angulation and depth. Int J Oral Maxillofac Implants 2014;29:853-62. https://doi.org/10.11607/jomi.3343
  42. Abdel-Azim T, Zandinejad A, Elathamna E, Lin W, Morton D. The influence of digital fabrication options on the accuracy of dental implant-based single units and complete-arch frameworks. Int J Oral Maxillofac Implants 2014;29:1281-8. https://doi.org/10.11607/jomi.3577
  43. Papaspyridakos P, Chen CJ, Gallucci GO, Doukoudakis A, Weber HP, Chronopoulos V. Accuracy of implant impressions for partially and completely edentulous patients: a systematic review. Int J Oral Maxillofac Implants 2014;29:836-45. https://doi.org/10.11607/jomi.3625
  44. Stoetzer M, Wagner ME, Wenzel D, Lindhorst D, Gellrich NC, von See C. Nonradiological method for 3-dimensional implant position assessment using an intra-oral scan: new method for postoperative implant control. Implant Dent 2014; 23:612-6.
  45. Nickenig HJ, Eitner S. An alternative method to match planned and achieved positions of implants, after virtual planning using cone-beam CT data and surgical guide templates-a method reducing patient radiation exposure (part I). J Craniomaxillofac Surg 2010;38:436-40. https://doi.org/10.1016/j.jcms.2009.10.025
  46. Mandelaris GA, Vlk SD. Guided implant surgery with placement of a presurgical CAD/CAM patient-specific abutment and provisional in the esthetic zone. Compend Contin Educ Dent 2014; 35:494-504.
  47. Stapleton BM, Lin WS, Ntounis A, Harris BT, Morton D. Application of digital diagnostic impression, virtual planning, and computer-guided implant surgery for a CAD/CAM-fabricated, implantsupported fixed dental prosthesis: a clinical report. J Prosthet Dent 2014;112:402-8. https://doi.org/10.1016/j.prosdent.2014.03.019
  48. Ender A, Mehl A. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent 2013;109:121-8. https://doi.org/10.1016/S0022-3913(13)60028-1
  49. Kattadiyil MT, Mursic Z, AlRumaih H, Goodacre CJ. Intra-oral scanning of hard and soft tissues for partial removable dental prosthesis fabrication. J Prosthet Dent 2014;112:444-8. https://doi.org/10.1016/j.prosdent.2014.03.022

Cited by

  1. Comparison of patient satisfaction with digital and conventional impression for prosthodontic treatment vol.54, pp.4, 2016, https://doi.org/10.4047/jkap.2016.54.4.379
  2. 치과위생사의 디지털 구강스캐너 사용에 따른 융합적 교육 요구도 vol.9, pp.5, 2018, https://doi.org/10.15207/jkcs.2018.9.5.069
  3. 치과용 스캐너 평가를 위한 국제표준모델의 재료 및 표면 상태에 따른 스캔 영상 결과물 비교 연구 vol.34, pp.2, 2015, https://doi.org/10.14368/jdras.2018.34.2.104
  4. 단일 수복물과 3본 고정성 수복물 지대치 모델에서 삼차원 분석을 통한 구강 스캐너의 정확도 비교 vol.57, pp.2, 2019, https://doi.org/10.4047/jkap.2019.57.2.102