DOI QR코드

DOI QR Code

Numerical Analysis of Intense Electric Current Pulse to Disperse Shaped Charge Metal Jet

성형작약탄 금속제트 산란을 위한 대전류 펄스의 수치해석적 연구

  • Park, Hyeong Gyu (Dept. of Aerospace Engineering, Pusan Nat'l Univ.) ;
  • Kim, Dong Kyu (1st-Directorate, 5th R&D Institute, Agency for Defense Development) ;
  • Kim, Si Woo (1st-Directorate, 5th R&D Institute, Agency for Defense Development) ;
  • Joo, Jae Hyun (1st-Directorate, 5th R&D Institute, Agency for Defense Development) ;
  • Song, Woo Jin (Industrial Liaison Innovation Center, Pusan Nat'l Univ.) ;
  • Kim, Jeong (Dept. of Aerospace Engineering, Pusan Nat'l Univ.)
  • 박형규 (부산대학교 항공우주공학과) ;
  • 김동규 (국방과학연구소 5 본부 1 부) ;
  • 김시우 (국방과학연구소 5 본부 1 부) ;
  • 주재현 (국방과학연구소 5 본부 1 부) ;
  • 송우진 (부산대학교 부품소재산학협력연구소) ;
  • 김정 (부산대학교 항공우주공학과)
  • Received : 2014.08.14
  • Accepted : 2014.09.11
  • Published : 2015.01.01

Abstract

The electromagnetic force induced by an intense electric current pulse, which generates an electromagnetic field around the metal jet originating from a shaped charge, can disperse and scatter the high-speed metal jet. An electric device consisting of an RLC circuit applies an intense electric current pulse that flows in the circuit while the metal jet passes between two electrodes. In this study, the metal jet formation was simulated using the ALE technique in 2-D, and a 3-D finite element model was mapped using 2-D simulation results to induce the electric current directly. The deformed shapes of the metal jet and the electromagnetic force were calculated using a finite element analysis by inducing the electric current directly, and the major parameters of the intense electric current pulse for breaking up the metal jet were examined.

성형작약탄에 의해 발생되는 금속제트에 대전류 펄스가 인가되면 금속제트 내 외부에 전자기장이형성 되고 생성된 전자기장에 의해 전자기력이 작용하여 금속제트를 분산 및 산란시키게 된다. 대전류펄스 인가장치는 RLC 회로로 구성되어 있고 두 전극판 사이로 금속제트가 관통되어 진행할 때 대전류펄스가 흐르게 된다. 본 연구에서는 ALE 기법을 이용한 2 차원 축 대칭 해석을 통해 두 전극판을 통과할 때의 금속제트 단면 형상을 예측하고, 2 차원 해석 모델에서 얻어낸 금속제트 단면을 3 차원 유한요소 모델로 재구성하여 금속제트에 전류를 직접 인가하였다. 또한, 유한요소해석을 통하여 금속제트에 직접적으로 대전류 펄스를 인가시켜 금속제트의 변형된 형상과 발생하는 전자기력을 계산하였으며, 금속제트의 산란을 일으키는데 영향을 주는 대전류 펄스의 주요 설계변수 특성에 대하여 검증하였다.

Keywords

References

  1. Matrosov, A. D. and Shyetsov, G. A., 1996, "Experimental Investigation of Current Instability of Shaped-Charge Jets," Journal of Applied Mechanics and Technical Physics, Vol. 37, No. 4, pp. 464-469. https://doi.org/10.1007/BF02369716
  2. Joo J.H., Choi J.H., Kim S.W., Kim D.K. and Kim J.T., 2014, "A Study on the Performance Reduction of Shaped Charge Jet by Pulsed Current," KIMST 2014 Annual Conference, pp. 1421-1422.
  3. Walters William P. and Zukas Jonas A., 1989, "Fundamentals of Shaped Charge," John Wiley & Sons, New York, pp. 2-45.
  4. Chou, P. C. and Flis W. J., 1986, "Recent Developments in Shaped Charge Technology," Propellants, Explosives, Pyrotechnics, Vol.11, No.4, pp. 99-114. https://doi.org/10.1002/prep.19860110402
  5. Oshima, S., Yamane, R., Moshimaru, Y. and Matsuoka, T., 1987, "The Shape of a Liquid Metal Jet Under a Non-Uniform Magnetic Field," JSE Int. J, Vol. 30, No. 261, pp. 437-448. https://doi.org/10.1299/jsme1987.30.437
  6. Fairlie, G. E., 1998, "The Numerical Simulation of High Explosives Using AUTODYN-2D & 3D," Institute of Explosive Engineers 4th Biannual Symposium.
  7. Lee, E., Finger, M. and Collins, W. 1973, "JWL Equation of State Coefficients for High Explosives," Lawrence Livermore National Laboratory, University of California, Livermore, No. UCID-16189.
  8. Itoh, S., Hamashima, H., Murata, K. and Kato, Y., 2002, "Determination of JWL Parameters from Underwater Explosion Test," 12th Int. Detonation Symp. San Diego, California. Vol. 281
  9. Gang, Y., Xu, H. and Dean, H., 2011, "Computer Simulation of Two-Dimensional Linear-Shaped Charge Jet Using Smoothed Particle Hydro-Dynamics," Engineering Computations, Vol. 28, No. 1, pp. 58-75. https://doi.org/10.1108/02644401111097028
  10. Johnson, G. R. and Cook, W. H., 1985, "Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures," Engineering Fracture Mechanics, Vol. 21, No. 1, pp. 31-48. https://doi.org/10.1016/0013-7944(85)90052-9
  11. Shvetsov, G. A., Matrosov, A. D., Fedorov, S. V., Babkin, A. V. and Ladov, S. V., 2011, "Effect of External Magnetic Fields on Shaped-Charge Operation," International Journal of Impact Engineering, Vol. 38, No. 6, pp. 521-526. https://doi.org/10.1016/j.ijimpeng.2010.10.024
  12. Oshima, S., Yamane, R., Moshimaru, Y. and Matsuoka, T., 1987, "The Shape of a Liquid Metal Jet Under a Non-Uniform Magnetic Field." JSE Int. J, Vol. 30, No. 261, pp. 437-448. https://doi.org/10.1299/jsme1987.30.437
  13. Trishin, Yu A., 2000, "Effect of Energy Dissipation on the Shaped-Charge Flow Regime," Journal of Applied Mechanics and Technical Physics, Vol. 41, No. 4, pp. 577-584. https://doi.org/10.1007/BF02466854