• Title/Summary/Keyword: 3C-SiC

Search Result 5,740, Processing Time 0.033 seconds

Characteristics of polycrystalline 3C-SiC micro resonators with doping concentrations (도핑량에 따른 다결정 3C-SiC 마이크로 공진기의 특성)

  • Hung, Mai Phi;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.131-131
    • /
    • 2009
  • This paper describes the fabrication and characteristics of polycrystalline (poly) 3C-SiC microresonators with $3{\times}10^{17}{\sim}1{\times}10^{19}cm^{-3}$ in-situ N-doping concentrations. In this work, the crystallinity, carrier concentration and surface morphology of the grown thin films were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The 1.2 ${\mu}m$ thick cantilvers and the 0.4 ${\mu}m$ thick doubly-clamped beam microresonators with various lengths were implemented using in-situ doping poly 3C-SiC thin films. The characteristics of the poly 3C-SiC microresonators were evaluated using quartz and a laser vibrometer under vacuum at room temperature. The resonant frequencies of the SiC microresonators decreased with doping concentrations owing to the reduction of the Young's modulus of the poly 3C-SiC thin films. It was confirmed that the resonant frequencies of the poly 3C-SiC microresonators are controllable by adjusting the doping concentrations.

  • PDF

Preparation and Mechanical Properties of 3Y-TZP/SiC Composites (3-TZP/SiC 복합체의 제조 및 기계적 성질)

  • 이홍림;이형민
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.877-887
    • /
    • 1992
  • Tetragonal zirconia powder with 3 mol% Y2O3 mas mixed with up to 30 vol% of ${\beta}$-SiC powders, and the mixtures were hot-pressed at 1500$^{\circ}C$ for 60 min under a pressure of 30 MPa in Ar atmosphere. Flexural strength and fracture toughness were measured at room-and high-temperature (1000$^{\circ}C$). Evolution of microstructure was also conducted to investigate the effects of SiC addition on the properties of 3Y-TZP ceramics. Average grain size of the composites was about 0.5 $\mu\textrm{m}$, and decreased with SiC addition. Both room- and high-temperature mechanical properties of the composites were improved with SiC content. Particularly, high-temperature strength and fracture toughness of 3Y-TZP/30v/o SiC composite were twice as high as those of 3Y-TZP. The hardness of the composites also increased with SiC content and reached maximum value at 3Y-TZP/30v/o SiC composite.

  • PDF

Fabrication and characteristics of polycrystalline 3C-SiCSchottky diodes for high temperature chemical sensors (고온 화학센서용 다결정 3C-SiC 쇼트키 다이오드 제작과 그 특성)

  • Chung, Gwiy-Sang;Ahn, Jeong-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.414-417
    • /
    • 2008
  • This paper describes the fabrication of a Pd/poly 3C-SiC Schottky diode and its characteristics, in which the poly 3C-SiC layer and Pd Schottky contact were deposited by using APCVD and sputter, respectively. Crystalline quality, uniformity, and preferred orientations of the Pd thin film were evaluated by SEM and XRD, respectively. Pd/poly 3C-SiC schottky diodes were fabricated and characterized by I-V and C-V measurements. Its electric current density Js and barrier height voltage were measured as $2{\times}10^{-3}A/cm^2$ and 0.58 eV, respectively. These devices were operated until about $400^{\circ}C$. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature chemical sensor applications.

Effects of Carbon-coated SiC Whiskers on the Mechanical Properties of SiC Whisker Reinforced Silicon Nitride Ceramic Composite (SiC 휘스커 강화 질화규소 복합재료의 기계작 성질에 미치는 카본 코팅 SiC 휘스커의 영향)

  • 배인경;이영규;조원승;최상욱;장병국;임실묵
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1007-1015
    • /
    • 1999
  • The Si3N4 composites reinforced with carbon-coated SiC whiskers were fabricated by hot-pressing at 180$0^{\circ}C$ for 2 hours to examine the effects of carbon-coated whiskers on the mechanical properties of SiC whisker reinforced Si3N4 composites. The flexural strength of the Si3N4 composites and Si3N4 monolith respectively. The weak interfacial bond between carbon-coated SiC whiskers and Si3N4 matrix which enhances the crack deflection and whisker pull-out could contribute to the improvement of mechanical properties of the composites.

  • PDF

Microstructure and Polytype of in situ-Toughened Silicon Carbide

  • Young Wook Kim;Mamoru Mitomo;Hideki Hirotsuru
    • The Korean Journal of Ceramics
    • /
    • v.2 no.3
    • /
    • pp.152-156
    • /
    • 1996
  • Fine (~0.09 $\mu$m) $\beta$-SiC Powders with 3.3wt% of large (~0.44$\mu$m) $\alpha$-SiC of $\beta$-SiC particles (seeds) added were hotpressed at 175$0^{\circ}C$ using $Y_2O_3$, $Al_2O_3$ and CaO as sintering aids and then annealed at 185$0^{\circ}C$ for 4 h to enhance grain growth. The resultant microstructure and polytypes were analyzed by high resolution electron microscopy (HREM).Growth of $\beta$-SiC with high density of microtwins and formation of ${\alpha}/{\beta}$ composite grains consisting of $\alpha$-SiC domain sandwiched between $\beta$-SiC domains were found in both specimens. When large $\alpha$-SiC (mostly 6H) seeds were added, the $\beta$-SiC transformend preferentially to the 6H polytype. In contrast, when large $\beta$-SiC (3C) seeds were added, the fine $\beta$-SiC transformed preferentially to the 4H polytype. Such results suggested that the polytype formation in SiC was influenced by crystalline form of seeds added as well as the chemistry of sintering aids. The ${\alpha}/{\beta}$ interface played and important role in the formation of elongated grains as evidenced by presence of ${\alpha}/{\beta}$ composite grains with high aspect ratio.

  • PDF

Fabrication of a Porous 3C-SiC Based Resistivity Hydrogen Sensor and Its Characteristics (다공성 3C-SiC 기반 저항식 수소센서의 제작과 그 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.168-171
    • /
    • 2011
  • Porous 3C-SiC(pSiC) samples with different pore diameters were prepared from poly crystalline N-type 3C-SiC by electrochemical anodization. The pSiC surface was chemically modified by the sputtering of Pd and Pt nano-particles as a hydrogen catalyst. Changes in resistance were monitored with hydrogen concentrations in the range of 110 ppm - 410 ppm. The variations of the electrical resistance in the presence of hydrogen demonstrated that Pd and Pt-deposited pSiC samples have the ability to detect hydrogen at room temperature. Regardless of the catalyst, the 25 nm pore diameter samples showed good response and recovery properties. However, the 60 nm samples showed unstable and slow response. It was found that the pore size affects the catalyst reaction and consequently, results in changes of the sensitivity to hydrogen.

Effect of a 3C-SiC buffer layer on SAW properties of AlN films (3C-SiC 버퍼층이 AlN 박막형 SAW 특성에 미치는 영향)

  • Hoang, Si-Hong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.235-235
    • /
    • 2009
  • This paper describes the influence of a polycrystalline (poly) 3C-SiC buffer layer on the surface acoustic wave (SAW) properties of poly aluminum nitride (AlN) thin films by comparing the center frequency, insertion loss, the electromechanical coupling coefficient ($k^2$), andthetemperaturecoefficientoffrequency(TCF) of an IDT/AlN/3C-SiC structure with those of an IDT/AlN/Si structure, The poly-AlN thin films with an (0002)-preferred orientation were deposited on a silicon (Si) substrate using a pulsed reactive magnetron sputtering system. Results show that the insertion loss (21.92 dB) and TCF (-18 ppm/$^{\circ}C$) of the IDT/AlN/3C-SiC structure were improved by a closely matched coefficient of thermal expansion (CTE) and small lattice mismatch (1 %) between the AlN and 3C-SiC. However, a drawback is that the $k^2(0.79%)$ and SAW velocity(5020m/s) of the AlN/3C-SiC SAW device were reduced by appearing in some non-(0002)AlN planes such as the (10 $\bar{1}$ 2) and (10 $\bar{1}$ 3) AlN planes in the AlN/SiC film. Although disadvantages were shown to exist, the use of the AlN/3C-SiC structure for SAW applications at high temperatures is possible. The characteristics of the AlN thin films were also evaluated using FT-IR spectra, XRD, and AFM images.

  • PDF

CVD로 성장된 다결정 3C-SiC 박막의 전기적 특성

  • An, Jeong-Hak;Jeong, Gwi-Sang
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.179-182
    • /
    • 2007
  • Polycrystaline (poly) 3C-SiC thin film on n-type and p-type Si were deposited by APCVD using HMDS, $H_2$, and Ar gas at $1180^{\circ}C$ for 3 hour. And then the schottky diode with Au/poly 3C-Sic/Si(n-type) structure was fabricated. Its threshold voltage ($V_d$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_D$) value were measured as 0.84 V, over 140 V, 61nm, and $2.7{\times}10^{19}\;cm^3$, respectively. The p-n junction diode fabricated by poly 3C-SiC was obtained like characteristics of single 3C-SiC p-n junction diode. Therefore, its poly 3C-SiC thin films are suitable MEMS applications in conjuction with Si fabrication technology.

  • PDF

Mechanical Properties of in-situ Doped Polycrystalline 3C-SiC Thin Films by APCVD (APCVD로 in-situ 도핑된 다결정 3C-SiC 박막의 기계적 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.235-238
    • /
    • 2009
  • This paper describes the mechanical properties of poly (Polycrystalline) 3C-SiC thin films with $N_2$ in-situ doping. In this work, the poly 3C-SiC film was deposited by APCVD (Atmospheric Pressure Chemical Vapor Deposition) method using single-precursor HMDS (Hexamethyildisilane: $Si_2(CH_3)_6)$ at $1200^{\circ}C$. The mechanical properties of doped poly 3C-SiC thin films were measured by nono-indentation according to the various $N_2$ flow rate. In the case of 0 sccm $N_2$ flow rate, Young's Modulus and hardness were obtained as 285 GPa and 35 GPa, respectively. Young's Modulus and hardness were decreased according to increase of $N_2$ flow rate. The crystallinity and surface roughness was also measured by XRD (X-Ray Diffraction) and AFM (Atomic Force Microscopy), respectively.

Fabrication of a Pd/poly 3C-SiC Schottky diode hydrogensensor and its characteristics (Pd/다결정 3C-SiC 쇼트키 다이오드형 수소센서의 제작과 그 특성)

  • Chung, Gwiy-Sang;Ahn, Jeong-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.222-225
    • /
    • 2009
  • This paper describes the fabrication and characteristics of Schottky micro hydrogen sensors for high temperatures by using polycrystalline(poly) 3C-SiC thin films grown on Si substrates with thermal oxide layer using APCVD. Pd/poly 3C-SiC Schottky diodes were made and evaluated by I-V and C-V measurements. Electric current density and barrier height voltage were $2{\times}10^{-3}A/cm^2$ and 0.58 eV, respectively. These devices could operate stably at about 400 $^{\circ}$. The characteristics of implemented sensors have been investigated in terms of sensitivity, linearity of response, response rate, and response time. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature $H_2$ sensor applications.