• 제목/요약/키워드: 3C-CNN

검색결과 21건 처리시간 0.012초

Weather Recognition Based on 3C-CNN

  • Tan, Ling;Xuan, Dawei;Xia, Jingming;Wang, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3567-3582
    • /
    • 2020
  • Human activities are often affected by weather conditions. Automatic weather recognition is meaningful to traffic alerting, driving assistance, and intelligent traffic. With the boost of deep learning and AI, deep convolutional neural networks (CNN) are utilized to identify weather situations. In this paper, a three-channel convolutional neural network (3C-CNN) model is proposed on the basis of ResNet50.The model extracts global weather features from the whole image through the ResNet50 branch, and extracts the sky and ground features from the top and bottom regions by two CNN5 branches. Then the global features and the local features are merged by the Concat function. Finally, the weather image is classified by Softmax classifier and the identification result is output. In addition, a medium-scale dataset containing 6,185 outdoor weather images named WeatherDataset-6 is established. 3C-CNN is used to train and test both on the Two-class Weather Images and WeatherDataset-6. The experimental results show that 3C-CNN achieves best on both datasets, with the average recognition accuracy up to 94.35% and 95.81% respectively, which is superior to other classic convolutional neural networks such as AlexNet, VGG16, and ResNet50. It is prospected that our method can also work well for images taken at night with further improvement.

Bhattacharyya 커널을 적용한 Centroid Neural Network (Centroid Neural Network with Bhattacharyya Kernel)

  • 이송재;박동철
    • 한국통신학회논문지
    • /
    • 제32권9C호
    • /
    • pp.861-866
    • /
    • 2007
  • 본 논문은 가우시안 확률분포함수 (Gaussian Probability Distribution Function) 데이터 군집화를 위해 중심신경망 (Centroid Neural Network, CNN)에 Bhattacharyya 커널을 적용한 군집화 알고리즘 (Bhattacharyya Kernel based CNN, BK-CNN)을 제안한다. 제안된 BK-CNN은 무감독 알고리즘인 중심신경망을 기반으로 하고 있으며, 커널 방법을 이용하여 데이터를 특징공간에서 투영한다. 입력공간의 비선형 문제를 선형적으로 해결하기 위해 제안한 커널 방법인데, 확률분포 사이의 거리측정을 위해 Bhattacharyya 거리를 이용한 커널방법을 사용하였다. 제안된 BK-CNN을 영상데이터 분류의 문제에 적용했을 때, 제안된 BK-CNN 알고리즘이 Bhattacharyya 커널을 적용한 k-means, 자기조직지도(Self-Organizing Map)와 중심 신경망등의 기존 알고리즘보다 1.7% - 4.3%의 평균 분류정확도 향상을 가져옴을 확인할 수 있었다.

외래 알파아밀라제의 Saccharomyces cerevisiae에서의 생산과 분비효율의 증진 (Improvement of Production and Secretion of Heterologous \alpha-Amylase from Saccharomyces cerevisiae.)

  • 최성호;김근
    • 한국미생물·생명공학회지
    • /
    • 제31권1호
    • /
    • pp.36-41
    • /
    • 2003
  • Saccharomyces cerevisiae로부터 외래 $\alpha$-amylase의 발현 및 분비를 증진시키기 위하여 여러 실험이 수행되었다. ADC1 promoter와 mouse salivary $\alpha$-amylase cDNA gene의 native signal sequence를 효모의 PRB1 promoter와 invertase leader sequence로 대치한 plasmid vector pCNN(AMY)를 제작하였다. 효모세포에서 생성된 $\alpha$-amylase의 세포외로의 분비율은 mouse o-amylase의 native signal sequence인 경우는 약 89.4%이었으며 invertase leader sequence로 치환된 경우는 96.3%로 분비효율이 증진되었다. 야생주인 K8l/pCNN(AMY)와 호흡결여변이주인 K81/pCNN(AMY)p-의 혐기적 조건하에서의 배양 결과 $\alpha$-amylase 생산량이 K8l/pCNN(AMY)보다 K81/pCNN(AMY)p-가 약 5~8배 정도 증가하였다. $\alpha$-Amylase의 생산에 있어서 배지조성에 따른 K81/pCNN(AMY)의 생산증진의 비교는 배지성분인 yeast extract와 peptone의 구성비율을 비교하였을 때 yeast extract 1%와 peptone 2%, NaCl의 경우 100 mM, 2-mercaptoethanol인 경우에는 0.015%(w/v)을 첨가하였을 때 최대 효소 활성을 나타내었고, 특히 2-mercaptoethanol인 경우에는 대조구에 비해 효소 생산량이 약 3배 정도 증진되었다.

A Novel RGB Channel Assimilation for Hyperspectral Image Classification using 3D-Convolutional Neural Network with Bi-Long Short-Term Memory

  • M. Preethi;C. Velayutham;S. Arumugaperumal
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.177-186
    • /
    • 2023
  • Hyperspectral imaging technology is one of the most efficient and fast-growing technologies in recent years. Hyperspectral image (HSI) comprises contiguous spectral bands for every pixel that is used to detect the object with significant accuracy and details. HSI contains high dimensionality of spectral information which is not easy to classify every pixel. To confront the problem, we propose a novel RGB channel Assimilation for classification methods. The color features are extracted by using chromaticity computation. Additionally, this work discusses the classification of hyperspectral image based on Domain Transform Interpolated Convolution Filter (DTICF) and 3D-CNN with Bi-directional-Long Short Term Memory (Bi-LSTM). There are three steps for the proposed techniques: First, HSI data is converted to RGB images with spatial features. Before using the DTICF, the RGB images of HSI and patch of the input image from raw HSI are integrated. Afterward, the pair features of spectral and spatial are excerpted using DTICF from integrated HSI. Those obtained spatial and spectral features are finally given into the designed 3D-CNN with Bi-LSTM framework. In the second step, the excerpted color features are classified by 2D-CNN. The probabilistic classification map of 3D-CNN-Bi-LSTM, and 2D-CNN are fused. In the last step, additionally, Markov Random Field (MRF) is utilized for improving the fused probabilistic classification map efficiently. Based on the experimental results, two different hyperspectral images prove that novel RGB channel assimilation of DTICF-3D-CNN-Bi-LSTM approach is more important and provides good classification results compared to other classification approaches.

실시간 얼굴 검출을 위한 Cascade CNN의 CPU-FPGA 구조 연구 (Cascade CNN with CPU-FPGA Architecture for Real-time Face Detection)

  • 남광민;정용진
    • 전기전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.388-396
    • /
    • 2017
  • 얼굴 검출에는 다양한 포즈, 빛의 세기, 얼굴이 가려지는 현상 등의 많은 변수가 존재하므로, 높은 성능의 검출 시스템이 요구된다. 이에 영상 분류에 뛰어난 Convolutional Neural Network (CNN)이 적절하나, CNN의 많은 연산은 고성능 하드웨어 자원을 필요로한다. 그러나 얼굴 검출을 위한 소형, 모바일 시스템의 개발에는 저가의 저전력 환경이 필수적이고, 이를 위해 본 논문에서는 소형의 FPGA를 타겟으로, 얼굴 검출에 적절한 3-Stage Cascade CNN 구조를 기반으로하는 CPU-FPGA 통합 시스템을 설계 구현한다. 가속을 위해 알고리즘 단계에서 Adaptive Region of Interest (ROI)를 적용했으며, Adaptive ROI는 이전 프레임에 검출된 얼굴 영역 정보를 활용하여 CNN이 동작해야 할 횟수를 줄인다. CNN 연산 자체를 가속하기 위해서는 FPGA Accelerator를 이용한다. 가속기는 Bottleneck에 해당하는 Convolution 연산의 가속을 위해 FPGA 상에 다수의 FeatureMap을 한번에 읽어오고, Multiply-Accumulate (MAC) 연산을 병렬로 수행한다. 본 시스템은 Terasic사의 DE1-SoC 보드에서 ARM Cortex A-9와 Cyclone V FPGA를 이용하여 구현되었으며, HD ($1280{\times}720$)급 입력영상에 대해 30FPS로 실시간 동작하였다. CPU-FPGA 통합 시스템은 CPU만을 이용한 시스템 대비 8.5배의 전력 효율성을 보였다.

U-Net과 cWGAN을 이용한 탄성파 탐사 자료 보간 성능 평가 (Comparison of Seismic Data Interpolation Performance using U-Net and cWGAN)

  • 유지윤;윤대웅
    • 지구물리와물리탐사
    • /
    • 제25권3호
    • /
    • pp.140-161
    • /
    • 2022
  • 탄성파 탐사 자료 획득 시 자료의 일부가 손실되는 문제가 발생할 수 있으며 이를 위해 자료 보간이 필수적으로 수행된다. 최근 기계학습 기반 탄성파 자료 보간법 연구가 활발히 진행되고 있으며, 특히 영상처리 분야에서 이미지 초해상화에 활용되고 있는 CNN (Convolutional Neural Network) 기반 알고리즘과 GAN (Generative Adversarial Network) 기반 알고리즘이 탄성파 탐사 자료 보간법으로도 활용되고 있다. 본 연구에서는 손실된 탄성파 탐사 자료를 높은 정확도로 복구하는 보간법을 찾기 위해 CNN 기반 알고리즘인 U-Net과 GAN 기반 알고리즘인 cWGAN (conditional Wasserstein Generative Adversarial Network)을 탄성파 탐사 자료 보간 모델로 사용하여 성능 평가 및 결과 비교를 진행하였다. 이때 예측 과정을 Case I과 Case II로 나누어 모델 학습 및 성능 평가를 진행하였다. Case I에서는 규칙적으로 50% 트레이스가 손실된 자료만을 사용하여 모델을 학습하였고, 생성된 모델을 규칙/불규칙 및 샘플링 비율의 조합으로 구성된 총 6가지 테스트 자료 세트에 적용하여 모델 성능을 평가하였다. Case II에서는 6가지 테스트 자료와 동일한 형식으로 샘플링된 자료를 이용하여 해당 자료별 모델을 생성하였고, 이를 Case I과 동일한 테스트 자료 세트에 적용하여 결과를 비교하였다. 결과적으로 cWGAN이 U-Net에 비해 높은 정확도의 예측 성능을 보였으며, 정량적 평가지수인 PSNR과 SSIM에서도 cWGAN이 높은 값이 나타나는 것을 확인하였다. 하지만 cWGAN의 경우 예측 결과에서 추가적인 잡음이 생성되었으며, 잡음을 제거하고 정확도를 개선하기 위해 앙상블 작업을 수행하였다. Case II에서 생성된 cWGAN 모델들을 이용하여 앙상블을 수행한 결과, 성공적으로 잡음이 제거되었으며 PSNR과 SSIM 또한 기존의 개별 모델 보다 향상된 결과를 나타내었다.

모바일 디바이스를 위한 소형 CNN 가속기의 마이크로코드 기반 컨트롤러 (Microcode based Controller for Compact CNN Accelerators Aimed at Mobile Devices)

  • 나용석;손현욱;김형원
    • 한국정보통신학회논문지
    • /
    • 제26권3호
    • /
    • pp.355-366
    • /
    • 2022
  • 본 논문은 프로그램 가능한 구조를 사용하여 재구성이 가능하고 저 전력 초소형의 장점을 모두 제공하는 인공지능 가속기를 위한 마이크로코드 기반 뉴럴 네트워크 가속기 컨트롤러를 제안한다. 대상 가속기가 다양한 뉴럴 네트워크 모델을 지원하도록 마이크로코드 컴파일러를 통해 뉴럴 네트워크 모델을 마이크로코드로 변환하여 가속기의 메모리 접근과 모든 연산기를 제어할 수 있다. 200MHz의 System Clock을 기준으로 설계하였으며, YOLOv2-Tiny CNN model을 구동하도록 컨트롤러를 구현하였다. 객체 감지를 위한 VOC 2012 dataset 추론용 컨트롤러를 구현할 경우 137.9ms/image, mask 착용 여부 감지를 위한 mask detection dataset 추론용으로 구현할 경우 99.5ms/image의 detection speed를 달성하였다. 제안된 컨트롤러를 탑재한 가속기를 실리콘칩으로 구현할 때 게이트 카운트는 618,388이며, 이는 CPU core로서 RISC-V (U5-MC2)를 탑재할 경우 대비 약 65.5% 감소한 칩 면적을 제공한다.

자세 추정을 위한 모션 캡처 데이터 복원 (Restoring Motion Capture Data for Pose Estimation)

  • 윤여수;박현준
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.5-7
    • /
    • 2021
  • 자세 추정을 위한 모션 캡처 데이터 파일에는 주변 환경과 움직임의 정도에 따라 부정확한 데이터가 존재할 수 있으므로, 이를 보정하는 작업이 필요하다. 기존에는 직접 후처리 과정을 통해 부정확한 데이터를 복원하였으나, 최근에는 자동화된 방법으로 LSTM, R-CNN 등 다양한 종류의 신경망을 사용한다. 하지만 신경망 기반의 데이터 복원 방법들은 컴퓨터 자원을 많이 요구하므로, 본 논문에서는 신경망 기반의 방법보다 자원 사용량은 낮추면서 데이터 복원율은 유지하는 방법을 제안한다. 제안하는 방법은 자세 측정 데이터(c3d)를 활용하여 부정확한 자세 데이터를 자동으로 복원한다. 실험 결과, 데이터의 부정확한 정도에 따라 89%에서부터 99% 정도의 데이터 복원율을 보였다.

  • PDF

발산거리 기반의 신경망에 의한 가우시안 확률 밀도 함수의 군집화 (Guassian pdfs Clustering Using a Divergence Measure-based Neural Network)

  • 박동철;권오현
    • 한국통신학회논문지
    • /
    • 제29권5C호
    • /
    • pp.627-631
    • /
    • 2004
  • 음성인식 모델상의 GPDFs(Gaussian Probability Density Functions)을 효율적으로 군집화 할 수 있는 알고리즘이 제안되었다. 제안된 알고리즘은 데이터 사이의 거리 척도로 발산 거리를 사용하는 새로운 형태의 CNN(Centroid Neural Network)으로, 제한된 자원을 가지는 H/W환경의 음성인식에서 메모리 사용량을 축소하는 응용에 대한 실험 결과, 음성인식 모델인 CDHMM(Continuous Density Hidden Markov Model)에서 기존의 Dk-means(Divergence-based k-means)알고리즘을 이용한 방법과 비교하여 인식 성능의 유지와 함께 약 31.3%의 GPDFs를 더 축소할 수 있었고, 군집화 알고리즘을 적용하지 자은 전체 GPDFs를 사용한 경우와 비교해서 인식 성능의 유지와 함께 약 61.8%의 GPDFs를 압축할 수 있었으며, SNR 10㏈ 잡음 데이터에 대한 성능평가에서도 인식 성능이 유지될 수 있었다.

Accuracy of artificial intelligence-assisted landmark identification in serial lateral cephalograms of Class III patients who underwent orthodontic treatment and two-jaw orthognathic surgery

  • Hong, Mihee;Kim, Inhwan;Cho, Jin-Hyoung;Kang, Kyung-Hwa;Kim, Minji;Kim, Su-Jung;Kim, Yoon-Ji;Sung, Sang-Jin;Kim, Young Ho;Lim, Sung-Hoon;Kim, Namkug;Baek, Seung-Hak
    • 대한치과교정학회지
    • /
    • 제52권4호
    • /
    • pp.287-297
    • /
    • 2022
  • Objective: To investigate the pattern of accuracy change in artificial intelligence-assisted landmark identification (LI) using a convolutional neural network (CNN) algorithm in serial lateral cephalograms (Lat-cephs) of Class III (C-III) patients who underwent two-jaw orthognathic surgery. Methods: A total of 3,188 Lat-cephs of C-III patients were allocated into the training and validation sets (3,004 Lat-cephs of 751 patients) and test set (184 Lat-cephs of 46 patients; subdivided into the genioplasty and non-genioplasty groups, n = 23 per group) for LI. Each C-III patient in the test set had four Lat-cephs: initial (T0), pre-surgery (T1, presence of orthodontic brackets [OBs]), post-surgery (T2, presence of OBs and surgical plates and screws [S-PS]), and debonding (T3, presence of S-PS and fixed retainers [FR]). After mean errors of 20 landmarks between human gold standard and the CNN model were calculated, statistical analysis was performed. Results: The total mean error was 1.17 mm without significant difference among the four time-points (T0, 1.20 mm; T1, 1.14 mm; T2, 1.18 mm; T3, 1.15 mm). In comparison of two time-points ([T0, T1] vs. [T2, T3]), ANS, A point, and B point showed an increase in error (p < 0.01, 0.05, 0.01, respectively), while Mx6D and Md6D showeda decrease in error (all p < 0.01). No difference in errors existed at B point, Pogonion, Menton, Md1C, and Md1R between the genioplasty and non-genioplasty groups. Conclusions: The CNN model can be used for LI in serial Lat-cephs despite the presence of OB, S-PS, FR, genioplasty, and bone remodeling.