• Title/Summary/Keyword: 35% Hydrogen Peroxide

Search Result 150, Processing Time 0.026 seconds

Paraquat Toxicity in Weed Species : Difference in Physiological Responses between Tolerant and Susceptible Species (잡초종(雜草種)에 대한 Paraquat 독성(毒性) : 내성종(耐性種)과 감수성(感受性) 종간(種間)의 반응(反應) 차이(差異))

  • Kang, B.H.;Shim, S.I.
    • Korean Journal of Weed Science
    • /
    • v.15 no.3
    • /
    • pp.224-231
    • /
    • 1995
  • Paraquat, the representative bipyridilium herbicide, has high phytotoxic activity through generating toxic oxygen species such as superoxide, hydrogen peroxide and hydroxy radical. The response patterns of plants to paraquat were various. It was assumed that the different response was derived from different antioxidative mechanisms including antioxidative enzymes and antioxidant. Paraquat treatment increased reducing sugar content and malondialdehyde formation at 35 days after treatment in a dose-dependent manner but chlorophyll content decreased. Glutathione content increased by paraquat treatment and tolerant species showed more glutathione content than susceptible species. Superoxide dismutase activity increased with the increase in paraquat concentration and that was higher in tolerant species than susceptible species. Photosynthetic activity(PSII activity) was affected by paraquat, so the susceptible species showed more reduced oxygen evolving capacity than tolerant species. Catalse, NADPH-cytochrome C reductase, and malate dehydrogenase, the enzymes tested in this study, showed that the activities decreased by paraquat treatment. Further studies are necessary to determine whether antioxidative system cause the tolerance to paraquat.

  • PDF

Microbial Inhibition of Lactic Strains isolated from Kimchi (김치에서 분리한 젖산균의 미생물 생육 저해)

  • Park, Yun-Hee;Kwon, Jung-Joo;Jo, Do-Hyun;Kim, Su-Il
    • Applied Biological Chemistry
    • /
    • v.26 no.1
    • /
    • pp.35-40
    • /
    • 1983
  • The inhibitory activity of 20 Lactic strains from Kimchi was tested against Escherichia coli and other microorganisms. Of the lactic strains investigated, A7 (Pediococcus cerevisiae) and C4(Leuconostoc spp.) were the most effective in restricting the growth of test organisms. The mixed culture inoculation of each selected lactic strain and Escherichia coli resulted in a drastic reduction in the plate count of Escherichia coli after 24 hours. Similar results were obtained when Staphylococcus aureus and Bacillus cereus were used as test organisms. For all test organisms, the presence of A7 caused a higher death rate constant than that of C4. Addition of catalase in the mixed culture did not prevent inhibition, suggesting that hydrogen peroxide did not cause the inhibition. The filtrate of A7 culture added to Escherichia coli showed identical inhibitory action, however heat treatment of filtrate at $80^{\circ}C$ 30min. destroyed the inhibitory activity. A7 filtrate treated with trypsin substantially lost the inhibitory effect, but not by pepsin. The results imply that the protein-like compound(s) is the principal inhibitor produced by this lactic strain.

  • PDF

Inhibition of Browning in Yam Fresh-cut and Control of Yam-putrefactive Bacterium Using Acetic Acid or Maleic Acid. (초산 및 말레산을 이용한 생마 신선편이 갈변억제 및 생마 저온부패균의 제어)

  • Ryu, Hee-Young;Kwun, In-Sook;Park, Sang-Jo;Lee, Bong-Ho;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.135-141
    • /
    • 2007
  • To increase the consumer acceptability of yam and the shelf-life of fresh-cut yam, organic acid-treated fresh-cut yam was prepared. When uncontaminated fresh-cut yam was stored at $4^{\circ}C$ for 14 days after treatment with 1% (v/w) organic acids, the browning and microbial putrefaction of fresh-cut yam were inhibited by treatment of acetic acid or maleic acid, whereas treatment of citric acid and ascorbic acid, commonly used browning inhibitors in food industry, did not show apparent effects on the browning and putrefaction of yam. The Inhibitory effects of acetic acid or maleic acid were superior than those of NaOCl (100 ppm), hydrogen peroxide (100 ppm) or commercially available washing solution. Also, treatments of 1% acetic acid, or 1% maleic acid Into artificially-contaminated yam $(10^5\;CFU/g-yam)$ showed strong inhibition of browning and putrefaction during long term storage at $4^{\circ}C$. The growth inhibition test indicated that 0.1% is enough to inhibit the growth of psychrotrophic yam-putrefactive Pseudomonas sp., and treatment of 0.1% acetic acid, or 0.1% maleic acid inhibited the browning and microbial putrefaction of fresh-cut yam. Our results suggested long-term distribution of yam or other root crops products is possible by treatment of organic acid, such as acetic acid, combined with aseptic vacuum packaging technology.

In vitro activities of Grape Pruning Stems for Application of Cosmetic Ingredients (포도 전정가지의 화장품 소재로서의 응용)

  • Yang, Jae Hwang;Baek, Sung Hwan;Park, Dong Woo;Jun, Dong Ha;Kim, Geuk-Jun;Jang, Min Jung
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.648-654
    • /
    • 2014
  • Grape pruning stems constitute a scarcely investigated class of byproducts with limited reports on their bioactive polyphenol content and/or industrial applications. Herein we present the outcome of our investigation on grape pruning stems extracts, concerning the assessment of their total polyphenolic content and the detailed evaluation of their antioxidant properties. Results obtained indicate that grape pruning stems are particularly rich in flavonoids and trans-resveratrol. The antioxidant activities was analyzed and expressed as electron donating ability, ABTS cation radical decolorization, hydrogen peroxide scavenging activity and superoxide anion radical scavenging activity, the antioxidant activity of Vitis labrusca L. pruning stems extracted (GPSE) was higher than that of BHA and L-ascrobic acid. The whitening and anti-wrinkle activities display an capability. Results herein grape pruning stems used as a valuable resource for the extraction of resveratrol, which would be added to functional cosmetics and food materials.

Comprehensive investigations of key mitochondrial metabolic changes in senescent human fibroblasts

  • Ghneim, Hazem K.;Alfhili, Mohammad A.;Alharbi, Sami O.;Alhusayni, Shady M.;Abudawood, Manal;Aljaser, Feda S.;Al-Sheikh, Yazeed A.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2022
  • There is a paucity of detailed data related to the effect of senescence on the mitochondrial antioxidant capacity and redox state of senescent human cells. Activities of TCA cycle enzymes, respiratory chain complexes, hydrogen peroxide (H2O2), superoxide anions (SA), lipid peroxides (LPO), protein carbonyl content (PCC), thioredoxin reductase 2 (TrxR2), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), reduced glutathione (GSH), and oxidized glutathione (GSSG), along with levels of nicotinamide cofactors and ATP content were measured in young and senescent human foreskin fibroblasts. Primary and senescent cultures were biochemically identified by monitoring the augmented cellular activities of key glycolytic enzymes including phosphofructokinase, lactate dehydrogenase, and glycogen phosphorylase, and accumulation of H2O2, SA, LPO, PCC, and GSSG. Citrate synthase, aconitase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, and complex I-III, II-III, and IV activities were significantly diminished in P25 and P35 cells compared to P5 cells. This was accompanied by significant accumulation of mitochondrial H2O2, SA, LPO, and PCC, along with increased transcriptional and enzymatic activities of TrxR2, SOD2, GPx1, and GR. Notably, the GSH/GSSG ratio was significantly reduced whereas NAD+/NADH and NADP+/NADPH ratios were significantly elevated. Metabolic exhaustion was also evident in senescent cells underscored by the severely diminished ATP/ADP ratio. Profound oxidative stress may contribute, at least in part, to senescence pointing at a potential protective role of antioxidants in aging-associated disease.

Oxidative stress impairs the meat quality of broiler by damaging mitochondrial function, affecting calcium metabolism and leading to ferroptosis

  • Chen, Zuodong;Xing, Tong;Li, Jiaolong;Zhang, Lin;Jiang, Yun;Gao, Feng
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1616-1627
    • /
    • 2022
  • Objective: This work was conducted to investigate the effects of oxidative stress on meat quality, mitochondrial function, calcium metabolism and ferroptosis of broilers. Methods: In this study, a total of 144 one-day-old male Ross 308 chicks were divided into 3 groups (control group, saline group, and hydrogen peroxide [H2O2] group) with 6 replicates of 8 broilers each. The study lasted for 42 d. The broilers in the saline and H2O2 groups were intraperitoneally injected with 0.75% saline and 10.0% H2O2 on the 16th and 37th day of the experimental period respectively, the injection volumes were 1.0 mL/kg of broiler body weight. On the 42nd day of the experimental period, two chicks were randomly selected from each cage, a total of thirty-six chicks were stunned by electric shock and slaughtered to collect breast muscle samples. Results: The H2O2 exposure reduced pH value, increased drip loss and shear force of breast meat (p<0.05), impaired the ultrastructure and function of mitochondria. The H2O2 exposure damaged the antioxidant system in mitochondria, excessive reactive oxygen species carbonylation modified calcium channels on mitochondria, which impaired the activities of key enzymes on calcium channel, resulted in the increased calcium concentration in cytoplasm and mitochondria (p<0.05). In addition, the H2O2 exposure increased the iron content and lipid peroxidation (p<0.05), which induced ferroptosis. Conclusion: Oxidative stress could impair meat quality by causing mitochondrial dysfunction, resulting in calcium metabolism disorder and ferroptosis.

Enzymatic Preparation and Antioxidant Activities of Protein Hydrolysates from Tenebrio molitor Larvae (Mealworm) (갈색거저리 유충 단백가수분해물의 제조 및 항산화 활성)

  • Yu, Mi-Hee;Lee, Hyo-Seon;Cho, Hye-Rin;Lee, Syng-Ook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.435-441
    • /
    • 2017
  • The present study was carried out to evaluate the applicability of Tenebrio molitor larvae (mealworm) as a health functional food material in order to contribute to the development of the domestic insect industry and health functional food industry. Protein hydrolysates were prepared from mealworm powder by enzymatic hydrolysis using five different proteases (alcalase, bromelain, flavourzyme, neutrase, and papain), and the hydrolysates were then tested for their antioxidant activities. Based on available amino group contents and sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses, mealworms treated with alcalase ($4,781.39{\mu}g/mL$), flavourzyme ($5,429.35{\mu}g/mL$), or neutrase ($3,155.55{\mu}g/mL$) for 24 h showed high degree of hydrolysis (HD) value, whereas HD values of bromelain ($1,800{\mu}g/mL$) and papain-treated ($1,782.61{\mu}g/mL$) mealworms were much lower. Protein hydrolysates showing high HD values were further separated into > 3 kDa and ${\leq}3kDa$ fractions by a centrifugal filter system and then lyophilized, and the production yields of the low molecular weight protein hydrolysates (${\leq}3kDa$) by alcalase, flavourzyme, and neutrase were 42.05%, 26.27%, and 30.01%, respectively. According to the RC_{50} values of the protein hydrolysates (${\leq}3kDa$) obtained from three different antioxidant analyses, all three hydrolysates showed similar antioxidant activities. Thus, alcalase hydrolysates showing the highest production yield of low molecular weight protein hydrolysates were further tested for their inhibitory effects on peroxidation of linoleic acid by measuring thiobarbituric acid values, and the results show that peroxidation of untreated linoleic acid increased dramatically during 6 days of incubation. However, pretreatment with the hydrolysates ($100{\sim}800{\mu}g/mL$) significantly inhibited linoleic acid peroxidation in a dose-dependent manner over 6 days.

Neuroprotective effects of cultured and fermented wild ginseng extracts on oxidative stress induced by hydrogen peroxide in PC12 cells (발효산삼배양근농축액의 산화방지 효과 및 과산화수소로 유발된 PC12 세포독성 보호효과)

  • Choi, Yeo Ok;Kim, Yu-Ri;Shin, Seung-Yong;Lee, Jae Geun;Kim, Chul Joong;Lee, Ye ji;Kang, Byeongju;Kim, Gwansu;Choi, Jee Eun;Han, Beom-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.383-390
    • /
    • 2018
  • Most neurodegenerative diseases are known to be influenced by oxidative stress. We investigated the anti-oxidative activity of the concentrate of fermented wild ginseng root culture (HLJG0701) containing ginsenosides Rg5 and Rk1. HLJG0701 showed effective DPPH and ABTS radical scavenging ability ($IC_{50}$: 16- and 4-fold dilution, respectively) and was inhibited dose-dependently by the $FeSO_4$-induced lipid peroxidation group (8- and 4-fold dilution: 2.3 and 1.5 nM, respectively). In MTT and LDH assays, 8-, 16-, 32- and 64-fold diluted HLJG0701 significantly increased cell viability by 70, 53, 35, and 26%, respectively. LDH released by HLJG0701 was reduced 1.3-fold with 8-fold diluted HLJG0701 compared to the $H_2O_2$-treated control. In addition, the inhibitory effect of HLJG0701 on oxidative stress in PC12 cells was confirmed by DCF-DA analysis (16-, 4-fold diluted HLJG0701: 50 and 68% ROS inhibition, respectively), TBARS (16- and 4-fold diluted HLJG0701: 50.7 and 46.5% inhibition, respectively), GPx (16- and 4-fold diluted HLJG0701: 133.3 and 227.3% release, respectively), and SOD analysis (16- and 4-fold diluted HLJG0701: 118.2 and 218.2% release, respectively). These results suggested that HLJG0701 protects neuronal cells by its anti-oxidative effects and hence can be a potential preventive material against neurodegenerative diseases.

Evaluation of Efficacy and Development of Predictive Model of Sanitizers and Disinfectants on Reduction of Microorganisms on Food Contact Surfaces (스테인리스 스틸 식품기구 표면에 사용되는 주요 살균소독제의 살균력 평가 및 살균예측모델 개발)

  • Lee, Yu-Si;Ha, Sang-Do;Kim, Dong-Ho;Park, Joon-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.203-208
    • /
    • 2011
  • This study was to evaluate the efficacy of sanitizer concentrations and treatment time against two major toad-borne pathogenic microorganisms such as Escherichia coli and Staphylococcus aureus on a stainless steel surface. As a result, stainless steel, treated with 100 ppm of chlorine showed reduction of E. coli(1.56, 1.49, 1.95 log cfu/25 $cm^2$) and S. aureus(0.49, 0.88, 1.27 log cfu/25 $cm^2$) after 0, 5 and 10 min, but none was not detected in treatment with 200 ppm. The population of E. coli(0.73, 0.90, 1.55 log cfu/25 $cm^2$) and S. aureus(0.37, 1.00, 1.45 log cfu/25 $cm^2$) reduced in 35.5% ethanol treated group, but none was not detected in treatment with 70%. The population was reduced E coli(0.28, 0.64, 1.07 cfu/25 $cm^2$) and S. aureus(0.53, 0.87, 0.99 log cfu/25 $cm^2$) by treatment with 45.5 ppm of hydrogen peroxide, but none was not detected in treatment with 91 ppm. Quarternary ammonium compound with 100 ppm was reduced E. coli(0.82, 1.62, 1.71 log cfu/25 $cm^2$) and S. aureus(0.46, 0.93, 1.38 log cfu/25 $cm^2$), but none was not detected in treatment with 200 ppm. Predictive models of sterilization for all 4 disinfectants were suitable to use with $r^2$ value of higher than 0.94. These models may be of use to food services and manufacture of safe products by controlling E. coli and S. aureus without the need for further detection of the organisms.

Effect of Pyroligneous Liquor on Oxygen Radicals and Their Scavenger Enzymes in Liver of CD Rats (흰쥐 간조직의 활성산소 및 제거효소에 미치는 목초액의 영향)

  • Choi, Jin-Ho;Cho, Weon-Ki
    • Journal of Nutrition and Health
    • /
    • v.40 no.2
    • /
    • pp.111-117
    • /
    • 2007
  • This study was designed to investigate the effects of pyroligneous liquor on oxygen radicals and their scavenger enzymes in the liver of Cri/Bgi CD rats (7 rats per group). Male rats were fed a basic diet prepared in our Lab., PL-0 (Control), PL-1, PL-25, PL-50 and PL-75 groups were Prepared to be 0%, 1%, 25%, 50% and 75%with distilled water using pyroligneous liquor (35% of Choa Co. Ltd.), and were administrated orally for 8 weeks. Superoxide radical contents in liver mitochondria and microsomes were significantly decreased to 12-14%, 11-15%, respectively, in these PL-25 and PL-50groups compared with the control group. Hydroxyl radical content in mitochondria and microsomes were markedly decreased to 12-20% and 17%, respectively, in these PL-25 and PL-50% groups compared with the control group. Hydrogen peroxide content in mitochondria and microsomes were significantly decreased about 15-12% and 22-20% in liver of PL-25 and PL-50 groups compared with the control group. Mn-SOD and Cu/Zn-SOD activities in liver of PL-25 and PL-50 groups were remarkably increased to 15-25%, 11-16%, respectively, compared with the control group. GPx activities in mitochondria and microsomes were significantly increased in the liver of PL-25 and PL-50 groups compared with the control group. CAT activities in mitochondria and cytosol were significantly increased to 12-14%, 15-27%, respectively, in the liver of PL-25 and PL-50 groups compared with the control group. These results suggest that long term administration orally of 25 and 50% pyroligneous liquor may effectively inhibit the formation of oxygen free radicals, and also scavenger enzyme activities significantly increase through the administration orally.