• Title/Summary/Keyword: 316 Stainless Steel

Search Result 458, Processing Time 0.029 seconds

High Temperature Oxidation Behavior of 316L Austenitic Stainless Steel Manufactured by Laser Powder Bed Fusion Process (Laser powder bed fusion 공정으로 제조된 오스테나이트계 316L 스테인레스 강의 고온 산화 거동)

  • Hwang, Yu-Jin;Wi, Dong-Yeol;Kim, Kyu-Sik;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.110-119
    • /
    • 2021
  • In this study, the high-temperature oxidation properties of austenitic 316L stainless steel manufactured by laser powder bed fusion (LPBF) is investigated and compared with conventional 316L manufactured by hot rolling (HR). The initial microstructure of LPBF-SS316L exhibits a molten pool ~100 ㎛ in size and grains grown along the building direction. Isotropic grains (~35 ㎛) are detected in the HR-SS316L. In high-temperature oxidation tests performed at 700℃ and 900℃, LPBF-SS316L demonstrates slightly superior high-temperature oxidation resistance compared to HR-SS316L. After the initial oxidation at 700℃, shown as an increase in weight, almost no further oxidation is observed for both materials. At 900℃, the oxidation weight displays a parabolic trend and both materials exhibit similar behavior. However, at 1100℃, LPBF-SS316L oxidizes in a parabolic manner, but HR-SS316L shows a breakaway oxidation behavior. The oxide layers of LPBF-SS316L and HR-SS316L are mainly composed of Cr2O3, Fe-based oxides, and spinel phases. In LPBF-SS316L, a uniform Cr depletion region is observed, whereas a Cr depletion region appears at the grain boundary in HR-SS316L. It is evident from the results that the microstructure and the high-temperature oxidation characteristics and behavior are related.

Sintering Stainless Steels with Boron Addition in Nitrogen Base Atmosphere

  • Abenojar, J.;Esteban, D.;Martinez, M.A.;Velasco, F.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.574-575
    • /
    • 2006
  • Due to the increasing use that the stainless steel is getting recently in the nuclear industry, this document proposes the study of the stainless steel 316L with boron addition. With the final product, the properties of the stainless steel 316L (good mechanical properties and high corrosion resistance) with the boron neutron absorption properties are claimed to unify. The P/M technologies allow adding higher boron quantities than with the solidification conventional technologies, where segregation is produced.

  • PDF

The effect of welding methods on the stress corrosion behavior of the welded austenitic stainless steel (오스테나이트 스테인리스강 용접부의 응력부식 거동에 미치는 용접 방법의 영향)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.42-50
    • /
    • 1995
  • To study the effect of welding methods on the Stress Corrosion Cracking (SCC) behavior of welded AISI type 316L and 304 austenitic stainless steel, the Slow Strain Rate Technique(SSRT) has been adopted in the boiling 45 wt% $MgCl_2$ solution. The results are as follows. 1) Welded sections are more susceptible than base metal in SCC, and the rank of SCC, and the rasistance in welding method is TIG, MIG, $CO_2$ and ARC. 2) The Ultimate tensile strength(UTS) and the strain of both base metal and welded joint are reduced as decreasing extension rate. 3) The SCC resistance of 316L base metal and welded sections are superior than that of 304. 4) The tendency of pitting and the SCC suseptibility are agreed well, and the SCC site is welded deposit section in 316L whereas HAZ in 304.

  • PDF

Low Cycle Fatigue Behaviors of Type 316 Stainless Steel in $310^{\circ}C$ Water Environment

  • Kim, Byoung-Koo;Cho, Hyun-Chul;Kim, In-Sup;Jang, Chang-Heui;Jung, Dae-Yul;Byeon, Seong-Cheol
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.467-468
    • /
    • 2005
  • Low cycle fatigue test results of Type 316 stainless steel in $310^{\circ}C$ water environment can be summarized as follows. 1. Cyclic stress response of Type 316 stainless steel shows negative strain rate sensitivity, primary hardening and secondary hardening. 2. Fatigue life in $310^{\circ}C$ water environment was shorter than fatigue life in room temperature air environment. This was because of water environment and temperature effects.

  • PDF

Correlationship between Tensile Properties and Damping Capacity of 316 L Stainless Steel (316 L 스테인리스강의 인장성질과 감쇠능의 관계)

  • Kwoon, Min-Gi;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • This study is experimentally investigated whether or not a relationship exists between the mechanical properties and damping capacity of cold-rolled 316 L stainless steel. Deformation-induced martensite was formed with surface relief and directionality. With the increasing degree of deformation, the volume fraction of ${\varepsilon}$-martensite increased, and then decreased, while ${\alpha}^{\prime}$-martensite increased rapidly. With an increasing degree of deformation, tensile strength was increased, and elongation was decreased; however, damping capacity was increased, and then decreased. Tensile strength and elongation were affected in the ${\alpha}^{\prime}$-martensite; hence, damping capacity was influenced greatly by ${\varepsilon}$-martensite. Thus, there was no proportional relationship between strength, elongation, and damping capacity.

Wear Corrosion Behaviour of Nitrogen Ion Implanted Super Stainless Steel (질소이온주입된 초내식성 스테인리스강의 마모부식 특성)

  • Kang, Sun-Hwa;Kim, Cheol-Sang
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.175-177
    • /
    • 1994
  • The wear corrosion behaviour of a nitrogen ion implanted super stainless steel (S.S.S, 22Cr - 20Ni - 6Mo - 0.25N) was compared with those of S.S.S, 316L SS and TiN coated 316L SS. The Cr and Ni amounts won out from the materials were investigated using an electrothermal atomic absorption spectrometry. We observed that the Cr dissolution rate of the S.S.S was similar to that of 316L SS, however, the Ni release of the S.S.S was feater than 316L SS. The metal ions released from the nitrogen ion implanted S.S.S surface were significantly reduced. The wear corrosion behaviour of the stainless steels was not correlated with the results shown by a static metal ion release test.

  • PDF

Mechanical performance of additively manufactured austenitic 316L stainless steel

  • Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.244-254
    • /
    • 2022
  • For tensile tests, Vickers hardness tests and microstructure tests, plate-type and box-type specimens of austenitic 316L stainless steels were produced by a conventional machining (CM) process as well as two additive manufacturing processes such as direct metal laser sintering (DMLS) and direct metal tooling (DMT). The specimens were irradiated up to a fast neutron fluence of 3.3 × 109 n/cm2 at a neutron irradiation facility. Mechanical performance of the unirradiated and irradiated specimens were investigated at room temperature and 300 ℃, respectively. The tensile strengths of the DMLS, DMT and CM 316L specimens are in descending order but the elongations are in reverse order, regardless of irradiation and temperature. The ratio of Vickers hardness to ultimate tensile strength was derived to be between 3.21 and 4.01. The additive manufacturing processes exhibit suitable mechanical performance, comparing the tensile strengths and elongations of the conventional machining process.

Development of a New LCF Life Prediction Model of 316L Stainless Steel at Elevated Temperature (316L 스테인리스 강의 고온 저주기 피로 수명식 개발)

  • Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.521-527
    • /
    • 2002
  • In this paper, tensile behavior and low cycle fatigue behavior of 316L stainless steel which is currently favored structural material for several high temperature components such as the liquid metal cooled fast breeder reactor (LMFBR) were investigated. Research was performed at 55$0^{\circ}C$, $600^{\circ}C$ and $650^{\circ}C$ since working temperature of 316L stainless steel in a real field is from 40$0^{\circ}C$ to $650^{\circ}C$. From tensile tests performed by strain controls with $1{\times}10^{-3}/s,\; l{\times}10^{ -4}/s \;and\; 1{\times}10/^{ -5}/ s $ strain rates at each temperature, negative strain rate response (that is, strain hardening decreases as strain rate increases) and negative temperature response were observed. Strain rate effect was relatively small compared with temperature effect. LCF tests with a constant total strain amplitude were performed by strain control with a high temperature extensometer at R.T, 55$0^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and total strain amplitudes of 0.3%~0.8% were used and test strain rates were $1{times}10^{-2} /s,\; 1{times}10^{-3} /s\; and\; 1{times}10^{-4} /s$. A new energy based LCF life prediction model which can explain the effects of temperature, strain amplitude and strain rate on fatigue life was proposed and its excellency was verified by comparing with currently used models.

Sintering Characteristics of 304 and 316L Stainless Steel Fine Powder (304 및 316L 스테인레스강 미립 분말의 소결 특성)

  • Lim, Tae-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1555-1559
    • /
    • 2008
  • The characteristics of 304 (Fe-18%Cr-12%Ni) and 316L (Fe-18%Cr-13%Ni-2.4%Mo) austenite stainless-steel compacts sintered with $5{\sim}15{\mu}m$ powder were investigated and the results led to the following conclusions: (1) When the sintering time was 3.6ks, the relative density of sintered compacts was $95{\sim}98%$, regardless of any other sintering condition. (2) When a vacuum sintering was done with $5{\mu}m$ stainless steel powders, almost fully-dense sintered compacts were obtained at is = 57.6ks. (3) The amount of residual oxygen in 304 and 316L sintered compacts was $0.5{\sim}0.6%$, regardless of sintering atmosphere. (4) The amount of residual oxygen in the vacuum sintered compact decreased more than 0.3 % due to addition of carbon powder, thereby reducing the formation of oxides. Furthermore, the addition of carbon improved the density of sintered compact, which enables us to make a fully-dense high performance sintered compact.

Application of Minimum Commitment Method for Predicting Long-Term Creep Life of Type 316LN Stainless Steel (Type 316LN 스테인리스강의 장시간 크리프 수명 예측을 위한 최소구속법의 적용)

  • Kim, Woo-Gon;Yin, Song-Nan;Ryu, Woo-Seog;Lee, Chan-Bock
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.118-124
    • /
    • 2008
  • Abstract: A minimum commitment method(MCM) was applied to predict the long-term creep rupture life for type 316LN stainless steel(SS). Lots of the creep-rupture data for the type 316LN SS were collected through world-wide literature surveys and the experimental data of KAERI. Using these data, the long-term creep rupture life above ${10}^5$ hour was predicted by means of the MCM. In order to obtain the most appropriate value for the constant A being used in the MCM equation, trial and error method was used for the wide ranges from -0.12 to 0.12, and the best value was determined by using the coefficient of determination, $R^2$ which is a statistical parameter. A suitable value for the A in type 316LN stainless steel was found to be at -0.02 ~ -0.05 ranges. It is considered that the MCM will be superior in creep-life prediction to commonly-used timetemperature parametric method, because the P(T) and G($\sigma$) functions are determined from the regression method based on experimental data.