Browse > Article

Application of Minimum Commitment Method for Predicting Long-Term Creep Life of Type 316LN Stainless Steel  

Kim, Woo-Gon (Korea Atomic Energy Research Institute (KAERI), Nuclear Material Technology Development Division)
Yin, Song-Nan (Korea Atomic Energy Research Institute (KAERI), Nuclear Material Technology Development Division)
Ryu, Woo-Seog (Korea Atomic Energy Research Institute (KAERI), Nuclear Material Technology Development Division)
Lee, Chan-Bock (Korea Atomic Energy Research Institute (KAERI), Nuclear Material Technology Development Division)
Publication Information
Korean Journal of Metals and Materials / v.46, no.3, 2008 , pp. 118-124 More about this Journal
Abstract
Abstract: A minimum commitment method(MCM) was applied to predict the long-term creep rupture life for type 316LN stainless steel(SS). Lots of the creep-rupture data for the type 316LN SS were collected through world-wide literature surveys and the experimental data of KAERI. Using these data, the long-term creep rupture life above ${10}^5$ hour was predicted by means of the MCM. In order to obtain the most appropriate value for the constant A being used in the MCM equation, trial and error method was used for the wide ranges from -0.12 to 0.12, and the best value was determined by using the coefficient of determination, $R^2$ which is a statistical parameter. A suitable value for the A in type 316LN stainless steel was found to be at -0.02 ~ -0.05 ranges. It is considered that the MCM will be superior in creep-life prediction to commonly-used timetemperature parametric method, because the P(T) and G($\sigma$) functions are determined from the regression method based on experimental data.
Keywords
minimum commitment method; type 316LN stainless steel; time-temperature parameter(TTP); creep; creep rupture; coefficient of determination;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 D. W. Kim, Y. K. Lee, W. G. Kim, and W. S. Ryu, J. Kor. Inst. Met. & Mater. 39, 1241 (2001)
2 W. G. Kim, S. H. Kim, and W. S. Ryu, KSME Int. J. 16, 420 (2002)
3 W. G. Kim, S. N. Yin, W. S. Ryu, Key Engineering Materials 297-300, 2272 (2005)   DOI
4 O. K Lim, T. K. Hwang, and E. H. Choi, Transactions of the KSME A 29, 45 (2005)   DOI
5 M. Liska, V. Vodarek, M. Sobotkova, and J. Sobotka, HNS 90, 78 (1990)
6 Y. S. Lee, D. W. Kim, D. Y. Lee, andW. S. Ryu, Met. Mater. Int. 7, 107 (2001)   DOI
7 W. G. Kim, S. N. Yin, and W. S. Ryu, W. Yi, Transactions of the KSME A 29,74 (2004)
8 M. D. Mathew, G. Sasikala, K. B. S. Rao, and S. L. Mannan, Mater. Sci. Eng. A 148, 253 (1991)   DOI   ScienceOn
9 S. S. Manson, and C. R. Ensign, Characterization of Materials for Service at Elevated Temperature Temperatures, MPC-7 ASME, New York, p.299-398 (1978)
10 W. E. White, and I. Le May, J. of Eng. Mater. Tech. 100, 333 (1978)   DOI
11 K. Kazuya, D. Shingo, T. Kenichi, S. Masayuki, K. Nobuchika, and T. Yoshihiko, ASME PVP 391, 47 (1999)
12 G. E. Diter, Mechanical Metallurgy, McGraw Hill Book Co., New York, p. 464-465 (1988)
13 I. Le May, Transactions of the ASME 101, 326 (1979)   DOI
14 NRIM Data Sheet, Data Sheets on the Elevated Temperature Properties of Hot Rolled Stainless Steel Plate (SUS 316-HP)-18Cr-12Ni-Mo-middle N-low C, No. 45, p. 1-12 (1997)
15 W. G. Kim, S. H. Kim, and W. S. Ryu, KSME Int. J. 15, 1463 (2001)   DOI
16 S. S. Manson, and C. R. Ensign, NASA TM X-52999, p 1-14 (1971)