• 제목/요약/키워드: 309L Austenite stainless steel

검색결과 6건 처리시간 0.017초

오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(I) - 시판 오스테나이트계 스테인리스강의 용접성 - (A Study of Metallurgical Phenomena in Austenitic Stainless Steel Fusion Welds (I) -Weldability of Commercial Austenitic Stainless Steels-)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • 제16권3호
    • /
    • pp.111-120
    • /
    • 1998
  • To predict and evaluate metallurgical and mechanical behavior of th welds, it is essential to understand solidification behavior and microstructural evolution experienced in the welds, neither of which follows the equilibrium phase diagram because of rapid heating and cooling conditions. Metallurgical phenomena in austenitic stainless steel fusion welds, types 304, 309S, 316L, 321 and 304N, were investigated in this study. Autogenous GTA welding was performed on weld coupons, and primary solidification mode and phase distribution were investigated from the welds. Varestraint test was employed to evaluate solidification cracking susceptibilities of the alloys. GTA weld fusion zones in type 304, 321 and 304N stainless steels experienced primary ferrite solidification while those in type 309S primary austenite solidification. Type 316L exhibited a mixed type of primary ferrite and primary austenite solidification. The primary solidification mode strongly depended on $Cr_{eq}/Ni_{eq}$ ratio. In terms of solidification cracking susceptibility, type 309S that solidified as primary austenite exhibited high cracking susceptibility while the alloys experienced primary ferrite solidification showed low cracking susceptibility. The relative ranking in solidification cracking susceptibility was type 304=type 304N < type 321 < type 316L < type 309S.

  • PDF

3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향 (Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.49-56
    • /
    • 2000
  • Recently developed Austenite stainless steel, 309L was used to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also, the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied. 1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained. 2) The form of martensite at the transition region was occurred by reversible transformation during cooling since the interdiffusion of Cr and Ni from weld metal and Fe and C from base metals at the transition region, causes to lowering the concentration of Cr and Ni at the transition region, leading to increasing Ms point. 3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling. 4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the gain boundary.

  • PDF

3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향 (Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.176-176
    • /
    • 2000
  • Recently developed Austenite stainless steel,309L was to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also. the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied.1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained.2) The form of martensite at the transition region was occured by reversible transition region, leading to increasing Ms point.3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling.4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the grain boudary.(Received August 3, 1999)

원자로 입출구 노즐 이종금속 용접부 Weld Inlay 레이저 클래딩 공정 개발 (Process Development of Laser Cladding for Weld Inlay Repair of Dissimilar Metal Weld in Reactor Vessel In/Outlet Nozzles)

  • 조홍석;정광운;모민환;조기현;최동철;이장욱;조상범
    • 한국압력기기공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.53-60
    • /
    • 2015
  • This study was investigated to develop process technology of laser cladding with austenite stainless steel for Weld Inlay repair of dissimilar metal weld in reactor vessel in/outlet nozzles. Weld Inlay experiments were performed by laser cladding repair system consisting of common manipulator, laser apparatus and welding process scheduler, etc. Single pass welding experiments were conducted in order to obtain the optimum welding process parameters for filler wires of ER309L and Alloy 52M before multi-layer laser cladding. Based on the above obtained results, multi-layer laser cladding experiments were carried out, and welding qualities for weld specimens were estimated by PT, OM, SEM and EDS analysis. Consequently, it was revealed that multi-layer laser cladding on austenite stainless steel using filler wires of ER309L and Alloy 52M could be possible to meet ASME Code standard without any weld defect.

스테인레스강 Overlay용접부의 수소취화 균열감수성에 관한 연구 1 (Study on the hydrogen embrittlement crack susceptibility of stainless steel overlaid weld metal (1))

  • 이영호
    • Journal of Welding and Joining
    • /
    • 제8권3호
    • /
    • pp.39-52
    • /
    • 1990
  • The research is to insure the soundness of the stainless steel overlaid weld metal(21/4Cr-IMo steel + SUS 309L) for a pressure vessel application. Detail studies were conducted for the PWHT influence on the micrstructure and intergranular corrosion characteristics of the overlaid weld metal as well as initiation of hydrogen embrittlement crack(or Disbonding) when welded metal are exposed to the hydrogen atmosphere. Hydrogen was experimentally charged to the overlaid weld metal in order to study PWHT effect on the susceptibility of hydrogen embrittlement crack. The results of this research are as follows: 1. At the bond region, austenite grain of the stainless steel side became coarsed and Cr23C6 type carbide was precipitated at the coarsed austenitic grain boundaries. Intergranular Corrosion width(by Straiss test) increased with increasing PWHT temperature and PWHT time.

  • PDF

DED 공정으로 제조된 경사조성재료 (STS 316L과 저합금강)의 미세조직 및 기계적특성 평가 (Evaluation of Microstructures and Mechanical Properties in Functionally Graded Materials (STS 316L and Low Alloy Steel) Produced by DED Processes)

  • 신기승;추웅;윤지현;양승용;김정한
    • 한국분말재료학회지
    • /
    • 제29권4호
    • /
    • pp.309-313
    • /
    • 2022
  • In this study, additive manufacturing of a functionally graded material (FGM) as an alternative to joining dissimilar metals is investigated using directed energy deposition (DED). FGM consists of five different layers, which are mixtures of austenitic stainless steel (type 316 L) and low-alloy steel (LAS, ferritic steel) at ratios of 100:0 (A layer), 75:25 (B layer), 50:50 (C layer), 25:75 (D layer), and 0:100 (E layer), respectively, in each deposition layer. The FGM samples are successfully fabricated without cracks or delamination using the DED method, and specimens are characterized using optical and scanning electron microscopy to monitor their microstructures. In layers C and D of the sample, the tensile strength is determined to be very high owing to the formation of ferrite and martensite structures. However, the elongation is high in layers A and B, which contain a large fraction of austenite.