• Title/Summary/Keyword: 304L Stainless steel

Search Result 101, Processing Time 0.024 seconds

Comparative Study on Microstructures of Hot-rolled STS 304L/A516-70N and STS 316L/A516-70N Clad Plates (열간압연으로 제조된 STS 304L/A516-70N과 STS 316L/A516-70N 클래드재들의 미세조직에 대한 비교 연구)

  • Jin, Ju-Chan;Cho, Soochul;Sim, Hoseop;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.4
    • /
    • pp.171-178
    • /
    • 2021
  • In the present study, we comparatively investigated the microstructures of two hot-rolled stainless steel clad plates; STS 304L - low carbon steel A516-70N and STS 316L - A516-70N. The STS 304L/A516-70N clad plate (Clad_304L_Ni) had a Ni-interlayer between stainless steel and carbon steel and a 90 ㎛ thick deformation band of unrecrystallized austenite grains on the stainless steel. The STS 316L/A516-70N clad plate (Clad_316L) had no interlayer and almost fully recrystallized austenite grains. Clad_304L_Ni exhibited the thinner a decarburized layer in carbon steel and a total carburized layer in stainless steel than Clad_316L. However, a severely carburized layer in stainless steel was thicker for Clad_304L_Ni than Clad_316L. Hardness profiles near the interface of clad plates matched well with microstructures at locations where the hardness values were measured.

Corrosion Resistance of Super Duplex Stainless Steel (수퍼 2상 스테인리스강의 부식 저항성에 관한 연구)

  • 강흥주;남기우;안석환;강창룡;도재윤;박인덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.40-46
    • /
    • 2003
  • The corrosion resistance of super duplex stainless steel on both its fibrous and dispersed phase was investigated. These structures consist of various volume fraction and distribution of austenite structure, which were obtained by changing the heat treatment temperature and cycle. The fibrous phase had higher austenite volume fraction than that of the dispersed phase at the same temperature. Corrosion resistance of super duplex stainless steel was evaluated through an immersion test and an impingement test, using 35% HCI and sea water, respectively. Super duplex stainless steel was compared with STS316L and STS304. The corrosion resistance of super duplex stainless steel was superior to ST316L and STS304. The dispersed phase of super duplex stainless steel was more stabilized than the fibrous phase in corrosion. The magnitude of corrosion rate was in order STS304, STS316L, fibrous phase of super duplex stainless steel and dispersed phase of super duplex stainless steel.

Effect of Hydrogen Charging Time and Tensile Loading Speed on Tensile Properties of 304L Stainless Steels

  • Hwang, SeungKuk;Lee, Sangpill;Lee, Jinkyung;Bae, Dongsu;Lee, Moonhee;Nam, Seunghoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • This study dealt with the tensile strength characteristics of stainless steel 304L steel by hydrogen charging. Especially, the effect of hydrogen charging time on the tensile strength and ductility of 304L stainless steels was evaluated, in conjunction with the observation of their fracture surfaces. The tensile properties of hydrogen-charged 304L stainless steels were also investigated with the variation of tensile loading speeds. The hydrogen amount of 304L stainless steels obviously increased with the increase of hydrogen charging time. The tensile properties of 304L stainless steels were clearly affected by the short term charging of hydrogen. In particular, the elongation of 304L stainless steels decreased with increasing hydrogen charging time, due to the hydrogen embrittlement. It was also found that the tensile properties of hydrogen-charged 304L stainless steels were very sensitive to the crosshead speed for tensile loading.

Surface Treatment of 304L Stainless Steel for Improving The Pitting Corrosion Resistance by Inhibitor

  • Hue Nguyen Viet;Kwon Sik Chol
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.3
    • /
    • pp.277-283
    • /
    • 2003
  • Electrochemical techniques were used to study the surface treatment for improving the pitting corrosion resistance of 304L stainless steel by inhibitors in chloride medium. Sodium molybdate (in concentration range : 0.005-80 g/l) , sodium nitrite (in concentration range : 0.001-50 g/l) and their mixture were used for this study. It was found that, molybdate and nitrite were good passivators for 304L stainless steel, but molybdate was not able to prohibit the pitting ; nitrite prevented pitting corrosion of 304L stainless steel only at the concentration more than 25 g/l. The relationship between pitting potentials and concentrations of inhibitors in the logarithm expression obeyed the linear function. It was found that the surface treatment by mixture of two inhibitors enables stainless steel to have increased the corrosion resistance , the pitting corrosion of 304L stainless steel was completely prohibited by the mixtures of molybdate and nitrite in ratio min, with $m\;\geq\;3\;and\;n\;\geq\;10$. The interesting cases on electrochemical measurement of threshold of inhibitors concentration combination for optimum surface treatment were described.

Low Cycle Fatigue Performance of 304L Stainless Steel Weldments (304L 스테인리스 강 용접부의 저주기 피로 성능 평가)

  • Hwang, JaeHyoen;Oh, DongJin;Lee, DoYoung;Chun, MinSung;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.47-51
    • /
    • 2016
  • Recently, the market of liquefied natural gas is growing in accordance with shale gas development and environmentally friendly policies. Also, LNG is in the spotlight as an alternative fuel to previously used fossil fuel and the fuel for the ship to meet emission standards which takes effected by IMO (International Maritime Organization). According to growth of LNG, LNG carriers needs are also expected to increase significantly. This study investigates low cycle fatigue (LCF) performance of 304L stainless steel weldments to investigate fatigue performance in plastic strain region. 304L stainless steel is known to have improved fatigue performance at cryogenic conditions. LCF behavior are investigated by a strain-controlled condition up to 1% strain range and conducted with three different thickness (3mm, 5mm, 10mm). Also, test were performed with three different strain ratio R such as R = -1, -0, 0.5, Finally, the fatigue design curve for 304L stainless steel weldments at room tem- perature are proposed. Considering all test conditions, it is shown that LCF performance have similar tendency regardless of thickness and strain ratio. LCF design curve of 304L stainless steel weldments are lower than 304L stainless steel base metal.

The Crevice Corrosion Behavior of AISI 304 & 316L Stainless Steel Welded by TIG, MIG, CO2 and SMA (용접방법에 따른 AISI 304 및 316L스테인리스강 용접부의 틈부식 거동)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.22-28
    • /
    • 1991
  • The crevice corrosion behavior on austenitic AISI 304 and 316L stainless steel welded by TIG, MIG, $CO_2$ and SMA was studied. The results are as follows : In 10% $FeCl_3$ solution and natural sea water sampled near Mokpo port, the base metal of 304 stainless steel showed small amount corrosion, whereas 316L stainless steel did not showed any corrosion in the test periods. The weight loss caused by crevice corrosion increased with increasing weld heat input and residual .delta. ferrite formed in welded part. The corrosion resistance of the welded part was in the order of TIG, MIG, $CO_2$ and SMA. From this tendency, it is proved that the smaller heat input gives the better corrosion resistance.

  • PDF

Numerical Simulation of Membrane of LNG Insulation System using User Defined Material Subroutine (사용자지정 재료 서브루틴을 활용한 LNG선박 단열시스템 멤브레인의 수치해석)

  • Kim, Jeong-Hyeon;Kim, Seul-Kee;Kim, Myung-Soo;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.265-271
    • /
    • 2014
  • 304L stainless steel sheets are used as a primary barrier for the insulation of membrane-type liquefied natural gas(LNG) carrier cargo containment system. 304L stainless steel is a transformation-induced-plasticity(TRIP) steel that exhibits complex material behavior, because it undergoes phase transformation during plastic deformation. Since the TRIP behavior is very important mechanical characteristics in a low-temperature environment, significant amounts of data are available in the literature. In the present study, a uniaxial tensile test for 304L stainless steel was performed to investigate nonlinear mechanical characteristics. In addition, a viscoplastic model and damage model is proposed to predict material fractures under arbitrary loads. The verification was conducted not only by a material-based comparative study involving experimental investigations, but also by a structural application to the LNG membrane of a Mark-III-type cargo containment system.

Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel

  • Kashkoli, Mosayeb Davoudi;Tahan, Khosro Naderan;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.701-715
    • /
    • 2019
  • Using first-order shear deformation theory (FSDT), a semi-analytical solution is employed to analyze creep damage and remaining life assessment of 304L austenitic stainless steel thick (304L ASS) cylindrical pressure vessels with variable thickness subjected to the temperature gradient and internal non-uniform pressure. Damages are obtained in thick cylinder using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The thermo-elastic creep response of the material is described by Norton's law. The novelty of the present work is that it seeks to investigate creep damage and life assessment of the vessels with variable thickness made of 304L ASS using LMP based on first-order shear deformation theory. A numerical solution using finite element method (FEM) is also presented and good agreement is found. It is shown that temperature gradient and non-uniform pressure have significant influences on the creep damages and remaining life of the vessel.

A Study of Metallurgical Phenomena in Austenitic Stainless Steel Fusion Welds (I) -Weldability of Commercial Austenitic Stainless Steels- (오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(I) - 시판 오스테나이트계 스테인리스강의 용접성 -)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.111-120
    • /
    • 1998
  • To predict and evaluate metallurgical and mechanical behavior of th welds, it is essential to understand solidification behavior and microstructural evolution experienced in the welds, neither of which follows the equilibrium phase diagram because of rapid heating and cooling conditions. Metallurgical phenomena in austenitic stainless steel fusion welds, types 304, 309S, 316L, 321 and 304N, were investigated in this study. Autogenous GTA welding was performed on weld coupons, and primary solidification mode and phase distribution were investigated from the welds. Varestraint test was employed to evaluate solidification cracking susceptibilities of the alloys. GTA weld fusion zones in type 304, 321 and 304N stainless steels experienced primary ferrite solidification while those in type 309S primary austenite solidification. Type 316L exhibited a mixed type of primary ferrite and primary austenite solidification. The primary solidification mode strongly depended on $Cr_{eq}/Ni_{eq}$ ratio. In terms of solidification cracking susceptibility, type 309S that solidified as primary austenite exhibited high cracking susceptibility while the alloys experienced primary ferrite solidification showed low cracking susceptibility. The relative ranking in solidification cracking susceptibility was type 304=type 304N < type 321 < type 316L < type 309S.

  • PDF

Electroless Copper Plating on 304L Stainless Steel Powders and Corrosion Resistance of the Sintered Compacts of Composite Powders (304L 스테인리스강 분말의 내식성 개선을 위한 무전해 구리 도금과 분말 소결체의 내식성 조사 연구)

  • Ahn, Jae-Woo;Lee, Jae-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.79-90
    • /
    • 2009
  • A study has been made about the effects of powder content, reaction temperature, reaction time, and stirring speed on the preparation of the stainless steel(STS) 304L powders plating with copper by an electroless plating method. The behavior of corrosion resistance of the sintered STS-Cu composite powders was also investigated by the salt spraying test The electroless plating technique was an effective method to manufactur the copper-uniform plating composite powders, the corrosion resistance of this sintered specimen was improved bysuppressing Cr precipitates on grain boundaries in the sintered compacts of composite powders.