• Title/Summary/Keyword: 3-level

Search Result 50,624, Processing Time 0.091 seconds

Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining (텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안)

  • Kim, Ikjun;Lee, Junho;Kim, Hyomin;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.149-169
    • /
    • 2020
  • "The Urban Renewal New Deal project", one of the government's major national projects, is about developing underdeveloped areas by investing 50 trillion won in 100 locations on the first year and 500 over the next four years. This project is drawing keen attention from the media and local governments. However, the project model which fails to reflect the original characteristics of the area as it divides project area into five categories: "Our Neighborhood Restoration, Housing Maintenance Support Type, General Neighborhood Type, Central Urban Type, and Economic Base Type," According to keywords for successful urban regeneration in Korea, "resident participation," "regional specialization," "ministerial cooperation" and "public-private cooperation", when local governments propose urban regeneration projects to the government, they can see that it is most important to accurately understand the characteristics of the city and push ahead with the projects in a way that suits the characteristics of the city with the help of local residents and private companies. In addition, considering the gentrification problem, which is one of the side effects of urban regeneration projects, it is important to select and implement urban regeneration types suitable for the characteristics of the area. In order to supplement the limitations of the 'Urban Regeneration New Deal Project' methodology, this study aims to propose a system that recommends urban regeneration types suitable for urban regeneration sites by utilizing various machine learning algorithms, referring to the urban regeneration types of the '2025 Seoul Metropolitan Government Urban Regeneration Strategy Plan' promoted based on regional characteristics. There are four types of urban regeneration in Seoul: "Low-use Low-Level Development, Abandonment, Deteriorated Housing, and Specialization of Historical and Cultural Resources" (Shon and Park, 2017). In order to identify regional characteristics, approximately 100,000 text data were collected for 22 regions where the project was carried out for a total of four types of urban regeneration. Using the collected data, we drew key keywords for each region according to the type of urban regeneration and conducted topic modeling to explore whether there were differences between types. As a result, it was confirmed that a number of topics related to real estate and economy appeared in old residential areas, and in the case of declining and underdeveloped areas, topics reflecting the characteristics of areas where industrial activities were active in the past appeared. In the case of the historical and cultural resource area, since it is an area that contains traces of the past, many keywords related to the government appeared. Therefore, it was possible to confirm political topics and cultural topics resulting from various events. Finally, in the case of low-use and under-developed areas, many topics on real estate and accessibility are emerging, so accessibility is good. It mainly had the characteristics of a region where development is planned or is likely to be developed. Furthermore, a model was implemented that proposes urban regeneration types tailored to regional characteristics for regions other than Seoul. Machine learning technology was used to implement the model, and training data and test data were randomly extracted at an 8:2 ratio and used. In order to compare the performance between various models, the input variables are set in two ways: Count Vector and TF-IDF Vector, and as Classifier, there are 5 types of SVM (Support Vector Machine), Decision Tree, Random Forest, Logistic Regression, and Gradient Boosting. By applying it, performance comparison for a total of 10 models was conducted. The model with the highest performance was the Gradient Boosting method using TF-IDF Vector input data, and the accuracy was 97%. Therefore, the recommendation system proposed in this study is expected to recommend urban regeneration types based on the regional characteristics of new business sites in the process of carrying out urban regeneration projects."

Impact of Shortly Acquired IPO Firms on ICT Industry Concentration (ICT 산업분야 신생기업의 IPO 이후 인수합병과 산업 집중도에 관한 연구)

  • Chang, YoungBong;Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.51-69
    • /
    • 2020
  • Now, it is a stylized fact that a small number of technology firms such as Apple, Alphabet, Microsoft, Amazon, Facebook and a few others have become larger and dominant players in an industry. Coupled with the rise of these leading firms, we have also observed that a large number of young firms have become an acquisition target in their early IPO stages. This indeed results in a sharp decline in the number of new entries in public exchanges although a series of policy reforms have been promulgated to foster competition through an increase in new entries. Given the observed industry trend in recent decades, a number of studies have reported increased concentration in most developed countries. However, it is less understood as to what caused an increase in industry concentration. In this paper, we uncover the mechanisms by which industries have become concentrated over the last decades by tracing the changes in industry concentration associated with a firm's status change in its early IPO stages. To this end, we put emphasis on the case in which firms are acquired shortly after they went public. Especially, with the transition to digital-based economies, it is imperative for incumbent firms to adapt and keep pace with new ICT and related intelligent systems. For instance, after the acquisition of a young firm equipped with AI-based solutions, an incumbent firm may better respond to a change in customer taste and preference by integrating acquired AI solutions and analytics skills into multiple business processes. Accordingly, it is not unusual for young ICT firms become an attractive acquisition target. To examine the role of M&As involved with young firms in reshaping the level of industry concentration, we identify a firm's status in early post-IPO stages over the sample periods spanning from 1990 to 2016 as follows: i) being delisted, ii) being standalone firms and iii) being acquired. According to our analysis, firms that have conducted IPO since 2000s have been acquired by incumbent firms at a relatively quicker time than those that did IPO in previous generations. We also show a greater acquisition rate for IPO firms in the ICT sector compared with their counterparts in other sectors. Our results based on multinomial logit models suggest that a large number of IPO firms have been acquired in their early post-IPO lives despite their financial soundness. Specifically, we show that IPO firms are likely to be acquired rather than be delisted due to financial distress in early IPO stages when they are more profitable, more mature or less leveraged. For those IPO firms with venture capital backup have also become an acquisition target more frequently. As a larger number of firms are acquired shortly after their IPO, our results show increased concentration. While providing limited evidence on the impact of large incumbent firms in explaining the change in industry concentration, our results show that the large firms' effect on industry concentration are pronounced in the ICT sector. This result possibly captures the current trend that a few tech giants such as Alphabet, Apple and Facebook continue to increase their market share. In addition, compared with the acquisitions of non-ICT firms, the concentration impact of IPO firms in early stages becomes larger when ICT firms are acquired as a target. Our study makes new contributions. To our best knowledge, this is one of a few studies that link a firm's post-IPO status to associated changes in industry concentration. Although some studies have addressed concentration issues, their primary focus was on market power or proprietary software. Contrast to earlier studies, we are able to uncover the mechanism by which industries have become concentrated by placing emphasis on M&As involving young IPO firms. Interestingly, the concentration impact of IPO firm acquisitions are magnified when a large incumbent firms are involved as an acquirer. This leads us to infer the underlying reasons as to why industries have become more concentrated with a favor of large firms in recent decades. Overall, our study sheds new light on the literature by providing a plausible explanation as to why industries have become concentrated.

Effects of High Glucose and Advanced Glycosylation Endproducts(AGE) on the in vitro Permeability Model (당과 후기당화합물의 생체 외 사구체여과율 모델에 대한 역할)

  • Lee Jun-Ho;Ha Tae-Sun
    • Childhood Kidney Diseases
    • /
    • v.10 no.1
    • /
    • pp.8-17
    • /
    • 2006
  • Purpose : We describe the changes of rat glomerular epithelial cells when exposed to high levels of glucose and advanced glycosylation endproducts(AGE) in the in vitro diabetic condition. We expect morphological alteration of glomerular epithelial cells and permeability changes experimentally and we may correlate the results with a mechanism of proteinuria in DM. Methods : We made 0.2 M glucose-6-phsphate solution mixed with PBS(pH 7.4) containing 50 mg/mL BSA and pretense inhibitor for preparation of AGE. As control, we used BSA. We manufactured and symbolized five culture dishes as follows; B5 - normal glucose(5 mM) + BSA, B30 - high glucose(30 mM) + BSA, A5 - normal glucose(5 mM) + AGE, A30 - high glucose(30 mM) + AGE, A/B 25 - normal glucose(5 mM) + 25 mM of mannitol(osmotic control). After the incubation period of both two days and seven days, we measured the amount of heparan sulfate proteoglycan(HSPG) in each dish by ELISA and compared them with the B5 dish at 2nd and 7th incubation days. We observed the morphological changes of epithelial cells in each culture dish using scanning electron microscopy(SEM). We tried the permeability assay of glomerular epithelial cells using cellulose semi-permeable membrane measuring the amount of filtered BSA through the apical chamber for 2 hours by sandwich ELISA. Results : On the 2nd incubation day, there was no significant difference in the amount of HSPG between the 5 culture dishes. But on the 7th incubation day, the amount of HSPG increased by 10% compared with the B5 dish on the 2nd day except the A30 dish(P<0.05). Compared with the B5 dish on the 7th day the amount of HSPG in A30 and B30 dish decreased to 77.8% and 95.3% of baseline, respectively(P>0.05). In the osmotic control group (A/B 25) no significant correlation was observed. On the SEM, we could see the separated intercellular junction and fused microvilli of glomerular epithelial cells in the culture dishes where AGE was added. The permeability of BSA increased by 19% only in the A30 dish on the 7th day compared with B5 dish on the 7th day in the permeability assay(P<0.05). Conclusion: We observed not only the role of a high level of glucose and AGE in decreasing the production of HSPG of glomerular epithelial cells in vitro, but also their additive effect. However, the role of AGE is greater than that of glucose. These results seems to correlate with the defects in charge selective barrier. Morphological changes of the disruption of intercellular junction and fused microvilli of glomerular epithelial cells seem to correlate with the defects in size-selective barrier. Therefore, we can explain the increased permeability of glomerular epithelial units in the in vitro diabetic condition.

  • PDF

The Effect of Franchisor's On-going Support Services on Franchisee's Relationship Quality and Business Performance in the Foodservice Industry (외식 프랜차이즈 가맹본부의 사후 지원서비스가 가맹점의 관계품질과 경영성과에 미치는 영향)

  • Lee, Jae-Han;Lee, Yong-Ki;Han, Kyu-Chul
    • Journal of Distribution Research
    • /
    • v.15 no.3
    • /
    • pp.1-34
    • /
    • 2010
  • Introduction The purpose of this research is to develop overall model which involves the effect of ongoing support services by franchisor on franchisee's relationship quality(trust, satisfaction, and commitment) and business performance(financial and non-financial performance), and to investigate the relationships among trust, satisfaction, commitment, financial and non-financial performance. This study also suggests franchise business or franchise system should be based on long-term orientation between franchisor and franchisee rather than short-term orientation, or transactional relationship, and proposes the most effective way of providing on-going support services by franchisor with franchisee thru symbiotic relationship among franchisor and franchisee Research Model and Hypothesis The research model as Figure 1 shows the variables on-going support services which affect the relationship quality between franchisor and franchisee such as trust, satisfaction, and commitment, and also analyze the effects of relationship quality on business performance including financial and non-financial performance We established 12 hypotheses to test as follows; Relationship between on-going support services and trust H1: On-going support services factors (product category & price, logistics service, promotion, information providing & problem solving capability, supervisor's support, and education & training support) have positive effect on franchisee's trust. Relationship between on-going support services and satisfaction H2: On-going support services factors (product category & price, logistics service, promotion, information providing & problem solving capability, supervisor's support, and education & training support) have positive effect on franchisee's satisfaction. Relationship between on-going support services and commitment H3: On-going support services factors (product category & price, logistics service, promotion, information providing & problem solving capability, supervisor's support, and education & training support) have positive effect on franchisee's commitment. Relationship among relationship quality: trust, satisfaction, and commitment H4: Franchisee's trust has positive effect on franchisee's satisfaction. H5: Franchisee's trust has positive effect on franchisee's commitment. H6: Franchisee's satisfaction has positive effect on franchisee's commitment. Relationship between relationship quality and business performance H7: Franchisee's trust has positive effect on franchisee's financial performance. H8: Franchisee's trust has positive effect on franchisee's non-financial performance. H9: Franchisee's satisfaction has positive effect on franchisee's financial performance. H10: Franchisee's satisfaction has positive effect on franchisee's non-financial performance. H11: Franchisee's commitment has positive effect on franchisee's financial performance. H12: Franchisee's commitment has positive effect on franchisee's non-financial performance. Method The on-going support services were defined as an organized system of continuous supporting services by franchisor for the purpose of satisfying the expectation of franchisee based on long-term orientation and classified into six constructs such as product category & price, logistics service, promotion, providing information & problem solving capability, supervisor's support, and education & training support. The six constructs were measured agreement using a 7-point Likert-type scale (1 = strongly disagree to 7 = strongly agree)as follows. The product category & price was measured by four items: menu variety, price of food material provided by franchisor, and support for developing new menu. The logistics service was measured by six items: distribution system of franchisor, return policy for provided food materials, timeliness, inventory control level of franchisor, accuracy of order, and flexibility of emergency order. The promotion was measured by five items: differentiated promotion activities, brand image of franchisor, promotion effect such as customer increase, long-term plan of promotion, and micro-marketing concept in promotion. The providing information & problem solving capability was measured by information providing of new products, information of competitors, information of cost reduction, and efforts for solving problems in franchisee's operations. The supervisor's support was measured by supervisor operations, frequency of visiting franchisee, support by data analysis, processing the suggestions by franchisee, diagnosis and solutions for the franchisee's operations, and support for increasing sales in franchisee. Finally, the of education & training support was measured by recipe training by specialist, service training for store people, systemized training program, and tax & human resources support services. Analysis and results The data were analyzed using Amos. Figure 2 and Table 1 present the result of the structural equation model. Implications The results of this research are as follows: Firstly, the factors of product category, information providing and problem solving capacity influence only franchisee's satisfaction and commitment. Secondly, logistic services and supervising factors influence only trust and satisfaction. Thirdly, continuing education and training factors influence only franchisee's trust and commitment. Fourthly, sales promotion factor influences all the relationship quality representing trust, satisfaction, and commitment. Fifthly, regarding relationship among relationship quality, trust positively influences satisfaction, however, does not directly influence commitment, but satisfaction positively affects commitment. Therefore, satisfaction plays a mediating role between trust and commitment. Sixthly, trust positively influence only financial performance, and satisfaction and commitment influence positively both financial and non-financial performance.

  • PDF

On the Influence Each Other Between the Monks in the Buddhist Temples and the Society in Towns or Villages (중국(中國) 지방사회(地方社會)와 불교사원(佛敎寺院) 그리고 승인(僧人)의 상호(相互) 영향(影響)에 관한 일고(一考))

  • Yan, Yao zhong
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.3
    • /
    • pp.60-79
    • /
    • 2012
  • Environment of ancient Chinese Buddhist temple can be classified to three types such as regional society(鄕村), famous mountain(名山), and urban areas(都市). This made differences in environment where a temple existed and in turn, affected development of Buddhism. And this made another type in relationship between Buddhist temple and a society. This study explains influences which regional society gave on not only Buddhist temple and a monk but also existence and development of Buddhism. When temples are placed in different environmental position, that is, urban areas and regional society, among a social structure, they eventually should adapt to a different society externally and internally. As told in above, ancient Chinese Buddhist temple was located in regional society, famous mountain, and urban areas. Since Eastern Jin and Sixteen Kingdoms, as number of temple much increased, and temples and monks were concentrated on famous mountain, temples in famous mountains and urban areas had developed showing similar aspects each other. But because temples in regional society were influenced a little differently, this study focused on the point. There are four kinds of influences between temples and monks in regional areas. Monks in regional areas had a comparatively close relationship with a society because they came from same area or surrounding areas. Therefore,powers of regional areas restrict influences made by monk group in temple. Second, temples in regional areas shared their joys and sorrows depending on regional economy. Temples in regional areas became a public place for the society and often a market place. In fact, construction and existence of a temple originally became a driving force in regional economy. This is because construction of temple needs artisans and materials and some temples had visitors and included market economy like consumption of incense and candles, though the economic size was large or small. And when regional areas experienced natural disaster or man-made disaster or had poor harvest or economy was in depression, monks left temples and then, temples themselves could not exist. Third, the relationship between temples in regional areas and Buddhists was distinguished from the temples in urban areas and famous mountains. This is because temples in China were places where monks practiced and at the same time, places where general Buddhists worshipped. So there were always a number of Buddhists around the temples. Forth, Buddhism in resional areas was connected to regional Folk beliefs. As a result, Buddhism was spread across the nation, worship with local color often was changed to Buddhist belief or was tinged with Buddhism. While temples in regional areas maintained a close relationship with regional society.they were influenced by the region or gave influences. As a representative example, temples in regional areas showed model behaviors instead of roles of facilities related to various cultures with comparatively advanced level - for example, school, hospital etc. The temples highly affected funerary rites in regional areas. Chinese tombs were mainlymade in regional areas. After death,people living in urban areas were buried in hometown or at least, they were buried in suburbs not urban areas. Temples in regional areas generally participated in funerary rites. Above shows that though most of famous Buddhist temples were located in urban areas not in famous mountains,majority of temples were located in vast regional areas. Through mutual interaction between temples and regional society, the temples in the regional areas were related to Chinese people of over 90% and regional areas became the most important foundation for Buddhism in China. Mutual influences between temples in regional areas and the general public in regions were omnidirectional and spreaded to every aspects of social life in small or large degree. Thus Tombs in temple were widely spreaded across regional areas over time and space. This is enough to explain a close relationship between Buddhist temples and rural society in ancient China.

Bibliographic Study on 『ChungMinKongKeicho (忠愍公啓草)』 by YI Sun-sin (이순신의 『충민공계초(忠愍公啓草)』에 대한 서지적 고찰)

  • Ro, Seung-Suk
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.2
    • /
    • pp.4-19
    • /
    • 2016
  • Jangkei(狀啓) made to the Royal Court by Yi Sun-sin during the Japanese invasions of Korea is handed down under the names of Jangcho(狀草), Keicho(啓草), Keibon(啓本) and others depending on copying patterns of those times and later times as it was copied out by a third person. In particular, "YimjinJangcho(壬辰狀草)" which Yi drew up during his service as the director of the naval forces in Jeolla Jwasooyeong is known as the most popular Jangkei. "ChungMinKongKeicho" which has been re-located recently after loss is a national treasure level cultural property as valuable as "YimjinJangcho" and should be treated as a model of Yi Sun-sin's other Jangkeis by next generations. As of now, however it is not confirmed if it is a totally new book related to Yi Sun-sin or is supplementary to the lost Jangkei, this study decided to ascertain relevant information through a bibliographic discussion on the question. "Chungmin(忠愍)" was the title that was used after the death of Yi Sun-sin, and "ChungMinKongKeicho" was completed when Jangkei was copied in 1662. 12 books that would not be found in YimjinJangcho are included in the book and such books are also present in the Jangkei supplement which has been known lost so far. What should be especially focused on here is that the forms and contents of these (11) photographs that Japanese shot from "ChungMinKongKeicho" in 1928 turned out to be completely identical to those of the original copy. The point that Korean History Compilation Committee added the 12 books to Jangkei as referring to the book as "One Keicho(啓草) partially copied(抄寫) in separation" and that Cho Sung-do categorized the 12 books into a supplement and others can be solid proofs to make the Jangkei supplement called "ChungMinKongKeicho". In terms of "ChungMooKongKeicho", since it consists of 62 books in total, it is not reasonable to see the book as Jangkei supplement which has the extra 12 more books for itself. "ChungMooKongKeibon" in "ChungMooKongYusa" was written with a total of 16 books. In the body, Yidumun is only clearly present, and the three books in the later part are same with the original copy of "ChungMooKongKeicho". "YimjinJangcho" by Korean History Compilation Committee has been the only book in which Yidumun was observed so far but now, it is assumed that the publication date of "ChungMooKongKeibon" goes before that of the former. The counterargument to the opinion that "ChungMinKongKeicho" is the supplement to Jangkei is based on Lee Eun-sang's comment "One page of a log in the Jangkei copy supplement." At first Seol Ui-sik introduced a piece photo of the rough draft of "MoosulIlki" in a drawing form through "Nanjung Ilkicho by Yi Sun-sin" in 1953. Lee Eun-sang also added two pages of the handwritten Yilkicho in the Jangkeichobon supplement to "MoosulIlki" and for the second time, the phrase "One page of a log written during the last 10 days after the Jangkei copy supplement" and "Supplement" were used. Those views are originated from the comment "One photograph of the rough draft of "MoosulIlki"" which Seol Ui-sik introduced without knowledge of the exact source. Lee Eun-sang said, "One page of a log in the Jangkei copy supplement" because Lee mistook "ChungMooKongYusa" for a book related to Jangkei. Since it is the wrong argument different from the actual situation of the original copy, if it has to be corrected, it should be rephrased "One page of a log in ChungMooKongYusa." After all, the source of the counterargument is the mistake because there has never been the Jangkei supplement with one page of a log included. All the Jangkeis other than "YimjinJangcho" can be said as the Jangkei supplements but still, they are separated from the other Jangkeis for the extra 12 more books are present in the commonly-called Jangkei supplement. Due to that reason, the argument on how "ChungMinKongKeicho" with the 12 books added is the popular Jangkei supplement should be considered more reasonable.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.

Different Look, Different Feel: Social Robot Design Evaluation Model Based on ABOT Attributes and Consumer Emotions (각인각색, 각봇각색: ABOT 속성과 소비자 감성 기반 소셜로봇 디자인평가 모형 개발)

  • Ha, Sangjip;Lee, Junsik;Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.55-78
    • /
    • 2021
  • Tosolve complex and diverse social problems and ensure the quality of life of individuals, social robots that can interact with humans are attracting attention. In the past, robots were recognized as beings that provide labor force as they put into industrial sites on behalf of humans. However, the concept of today's robot has been extended to social robots that coexist with humans and enable social interaction with the advent of Smart technology, which is considered an important driver in most industries. Specifically, there are service robots that respond to customers, the robots that have the purpose of edutainment, and the emotionalrobots that can interact with humans intimately. However, popularization of robots is not felt despite the current information environment in the modern ICT service environment and the 4th industrial revolution. Considering social interaction with users which is an important function of social robots, not only the technology of the robots but also other factors should be considered. The design elements of the robot are more important than other factors tomake consumers purchase essentially a social robot. In fact, existing studies on social robots are at the level of proposing "robot development methodology" or testing the effects provided by social robots to users in pieces. On the other hand, consumer emotions felt from the robot's appearance has an important influence in the process of forming user's perception, reasoning, evaluation and expectation. Furthermore, it can affect attitude toward robots and good feeling and performance reasoning, etc. Therefore, this study aims to verify the effect of appearance of social robot and consumer emotions on consumer's attitude toward social robot. At this time, a social robot design evaluation model is constructed by combining heterogeneous data from different sources. Specifically, the three quantitative indicator data for the appearance of social robots from the ABOT Database is included in the model. The consumer emotions of social robot design has been collected through (1) the existing design evaluation literature and (2) online buzzsuch as product reviews and blogs, (3) qualitative interviews for social robot design. Later, we collected the score of consumer emotions and attitudes toward various social robots through a large-scale consumer survey. First, we have derived the six major dimensions of consumer emotions for 23 pieces of detailed emotions through dimension reduction methodology. Then, statistical analysis was performed to verify the effect of derived consumer emotionson attitude toward social robots. Finally, the moderated regression analysis was performed to verify the effect of quantitatively collected indicators of social robot appearance on the relationship between consumer emotions and attitudes toward social robots. Interestingly, several significant moderation effects were identified, these effects are visualized with two-way interaction effect to interpret them from multidisciplinary perspectives. This study has theoretical contributions from the perspective of empirically verifying all stages from technical properties to consumer's emotion and attitudes toward social robots by linking the data from heterogeneous sources. It has practical significance that the result helps to develop the design guidelines based on consumer emotions in the design stage of social robot development.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Typology of Korean Eco-sumers: Based on Clothing Disposal Behaviors (관우한국생태학적일개예설(关于韩国生态学的一个预设): 기우복장탑배적행위(基于服装搭配的行为))

  • Sung, Hee-Won;Kincade, Doris H.
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.1
    • /
    • pp.59-69
    • /
    • 2010
  • Green or an environmental consciousness has been a major issue for businesses and government offices, as well as consumers, worldwide. In response to this movement, the Korean government announced, in the early 2000s, the era of "Green Growth" as a way to encourage green-related business activities. The Korean fashion industry, in various levels of involvement, presents diverse eco-friendly products as a part of the green movement. These apparel products include organic products and recycled clothing. For these companies to be successful, they need information about who are the consumers who consider green issues (e.g., environmental sustainability) as part of their personal values when making a decision for product purchase, use, and disposal. These consumers can be considered as eco-sumers. Previous studies have examined consumers' purchase intention for or with eco-friendly products. In addition, studies have examined influential factors used to identify the eco-sumers or green consumers. However, limited attention was paid to eco-sumers' disposal or recycling behavior of clothes in comparison with their green product purchases. Clothing disposal behaviors are ways that consumer can get rid of unused clothing and in clue temporarily lending the item or permanently eliminating the item by "handing down" (e.g., giving it to a younger sibling), donating, exchanging, selling, or simply throwing it away. Accordingly, examining purchasing behaviors of eco-friendly fashion items in conjunction with clothing disposal behaviors should improve understanding of a consumer's clothing consumption behavior from the environmental perspective. The purpose of this exploratory study is to provide descriptive information about Korean eco-sumers who have ecologically-favorable lifestyles and behaviors when buying and disposing of clothes. The objectives of this study are to (a) categorize Koreans on the basis of clothing disposal behaviors; (b) investigate the differences in demographics, lifestyles, and clothing consumption values among segments; and (c) compare the purchase intention of eco-friendly fashion items and influential factors among segments. A self-administered questionnaire was developed based on previous studies. The questionnaire included 10 items of clothing disposal behavior, 22 items of LOHAS (Lifestyles of Health and Sustainability) characteristics, and 19 items of consumption values, measured by five-point Likert-type scales. In addition, the purchase intention of two eco-friendly fashion items and 11 attributes of each item were measured by seven-point Likert type scales. Two polyester fleece pullovers, made from fabric created from recycled bottles with the PET identification code, were selected from one Korean brand and one US imported brand among outdoor sportswear brands. A brief description of each product with a color picture was provided in the survey. Demographic variables (i.e., gender, age, marital status, education level, income, occupation) were also included. The data were collected through a professional web survey agency during May 2009. A total of 600 final usable questionnaires were analyzed. The age of respondents ranged from 20 to 49 years old with a mean age of 34 years. Fifty percent of the respondents were males and about 58% were married, and 62% reported having earned university degrees. Principal components factor analysis with varimax rotation was used to identify the underlying dimensions of the clothing disposal behavior scale, and three factors were generated (i.e., reselling behavior, donating behavior, non-recycling behavior). To categorize the respondents on the basis of clothing disposal behaviors, k-mean cluster analysis was used, and three segments were obtained. These consumer segments were labeled as 'Resale Group', 'Donation Group', and 'Non-Recycling Group.' The classification results indicated approximately 98 percent of the original cases were correctly classified. With respect to demographic characteristics among the three segments, significant differences were found in gender, marital status, occupation, and age. LOHAS characteristics were reduced into the following five factors: self-satisfaction, family orientation, health concern, environmental concern, and voluntary service. Significant differences were found in the LOHAS factors among the three clusters. Resale Group and Donation Group showed a similar predisposition to LOHAS issues while the Non-Recycling Group presented the lowest mean scores on the LOHAS factors compared to the other segments. The Resale and Donation Groups described themselves as enjoying or being satisfied with their lives and spending spare-time with family. In addition, these two groups cared about health and organic foods, and tried to conserve energy and resources. Principal components factor analysis generated clothing consumption values into the following three factors: personal values, social value, and practical value. The ANOVA test with the factors showed differences primarily between the Resale Group and the other two groups. The Resale Group was more concerned about personal value and social value than the other segments. In contrast, the Non-Recycling Group presented the higher level of social value than did Donation Group. In a comparison of the intention to purchase eco-friendly products, the Resale Group showed the highest mean score on intent to purchase Product A. On the other hand, the Donation Group presented the highest intention to purchase for Product B among segments. In addition, the mean scores indicated that the Korean product (Product B) was more preferable for purchase than the U.S. product (Product A). Stepwise regression analysis was used to identify the influence of product attributes on the purchase intention of eco product. With respect to Product A, design, price and contribution to environmental preservation were significant to predict purchase intention for the Resale Group, while price and compatibility with my image factors were significant for the Donation Group. For the Non-Recycling Group, design, price compatibility with the factors of my image, participation to eco campaign, and contribution to environmental preservation were significant. Price appropriateness was significant for each of the three clusters. With respect to Product B, design, price and compatibility with my image factors were important, but different attributes were associated significantly with purchase intention for each of the three groups. The influence of LOHAS characteristics and clothing consumption values on intention to purchase Products A and B were also examined. The LOHAS factor of health concern and the personal value factor were significant in the relationships with the purchase intention; however, the explanatory powers were low in the three segments. Findings showed that each group as classified by clothing disposal behaviors showed differences in the attributes of a product, personal values, and the LOHAS characteristics that influenced their purchase intention of eco-friendly products. Findings would enable organizations to understand eco-friendly behavior and to design appropriate strategic decisions to appeal eco-sumers.