• 제목/요약/키워드: 3-dimensional finite element analysis

검색결과 1,523건 처리시간 0.025초

쾌속 3차원 조형법과 유한요소해석을 연계한 소성가공 금형설계의 동시공학적 접근방법 (Concurrent Engineering Approach to the Die Design of Metal Forming Process using Rapid Prototyping and Finite Element Analysis)

  • Part, K.;Yoon, J.W.;Cho, J.R.
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.146-154
    • /
    • 1996
  • In this work, rapid prototyping and three-dimensional finite element analysis are simultaneously applied to the die design of metal forming processes. Rapid prototyping is a new prototyping technology which produces three-dimensional part models directly from CAD data and has been extensively applied to various manufacturing processes. There are many types of rapid prototyping systems due to their building principles and materials. In this work, Stereolithography Apparatus(SLA), which is the most widely used rapidprototyping system, is introduced to manufacture the die set. For general preparation of STL file, which is the standard input file of rapid prototyping system, mesh data which are used in describing the die surface in finite element analysis are translated so that rapid prototyping and finite element analysis are dffectively connected. A die set for spider forging and a clover punch for deep drawing section are manufactured effciently using SLA prototypes, and metal forming experiments are carried out using them. Comparing the result of experiments with that of analyses, the processes can be predicted and designed successfully.

  • PDF

Meshless Finite Element Analysis of Three-Dimensional Problems Using Fuzzy Knowledge Processing

  • 이준성
    • 한국지능시스템학회논문지
    • /
    • 제8권4호
    • /
    • pp.1-7
    • /
    • 1998
  • This paper describes a meshless of element-free method based on fuzzy knowledge processing. To efficiently simulate complicated physical phenomena with dynmics and non-linear ploblem using computational mechanics, special method is required such as parallel processing or adaptive analysis techniques. However, the conventional finite element method is too complicated to be employed in the above cases. In order to reduce the above complexity of the conventional finite element analysis systms, the so called meshles finite elements as an input information have been stuided. Node is generated if its distance form existing node points is similar to the node spacing fuction at the point. The node spacing function is well controlled by the fuzzy knowledge processing Practical performances of the present system are demonstrated through several three-dimensional(3D) problems.

  • PDF

3차원 유한요소법을 이용한 장대교량용 가동받침 설계 (Structural Design of a Movable Bearing Shoe for Large Bridge Using Three Dimensional Finite Element Method)

  • 조종래;이부윤
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.51-57
    • /
    • 1999
  • Recently, long large bridges are built for mass transportation. Movable bearing shoes are important components of the bridges because they support movement of translation and rotation of bridge. In design stage of the long large bridges, detailed analyses using the finite element method are performed to guarantee safety and reliability. For that purpose, three-dimensional modeling is carried out by I-DEAS software and finite element analysis by ANSYS software. Results of the analyses are reviewed and important design factors for movable bearing shoes are discussed.

  • PDF

The finite element model research of the pre-twisted thin-walled beam

  • Chen, Chang Hong;Zhu, Yan Fei;Yao, Yao;Huang, Ying
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.389-402
    • /
    • 2016
  • Based on the traditional mechanical model of thin-walled straight beam, the paper makes analysis and research on the pre-twisted thin-walled beam finite element numerical model. Firstly, based on the geometric deformation differential relationship, the Saint-Venant warping strain of pre-twisted thin-walled beam is deduced. According to the traditional thin-walled straight beam finite element mechanical model, the finite element stiffness matrix considering the Saint-Venant warping deformations is established. At the same time, the paper establishes the element stiffness matrix of the pre-twisted thin-walled beam based on the classic Vlasov Theory. Finally, by calculating the pre-twisted beam with elliptical section and I cross section and contrasting three-dimensional solid finite element using ANSYS, the comparison analysis results show that pre-twisted thin-walled beam element stiffness matrix has good accuracy.

3차원 지하수 흐름해석 프로그램 개발에 관한 연구 (Development of Three Dimensional Groundwater Flow Program)

  • 박준모;장연수;김홍석;이두화
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.577-584
    • /
    • 2001
  • For construction and design of tunnels, groundwater flow models are used to find the influence of groundwater to the stability of tunnels considering the geological condition around the tunnels and the materials used in tunnel linings. For the analysis of tunnel flow, some commercial programs, e.g. MODFLOW, SEEP/W etc., are used. These programs have limitations that MODFLOW could not define curved surface smoothly in three dimensional flow media and SEEP/W is the 2-dimensional flow model. In this paper, the ability of a finite element program developed for analyzing 3-dimensional groundwater flow is examined. Confined steady state groundwater flow solution in non-homogeneous media is obtained using isoparametric element with eight trilinear hexahedron nodes and is compared with the result of MODFLOW. It was found that the solution yielded a good result with the three dimensional flow studied.

  • PDF

마이크로 액추에이터의 실제 거동에 대한 FEA 시뮬레이션 (FEA Simulation for Practical Behaviors of Electrostatic Micro Actuator)

  • 이양창;이준성
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.115-121
    • /
    • 2005
  • Micromachines are extremely novel artifacts with a variety of special characteristics. Utilizing their tiny dimensions ranging roughly from 10 to $10^3$ micro-meters, the micromachines can perform tasks in a revolutionary manner that would be impossible for conventional artifacts. Micromachines are in general related to various coupled physical phenomena. They are required to be evaluated and designed considering the coupled phenomena. This paper describes finite element analysis (FEA) simulation of practical behaviors for the micro actuator. Especially, electric field modeling in micro actuators has been generally restricted to in-plane two-dimensional finite element analysis because of the complexity of the micro actuator geometry. However, in this paper, the actual three-dimensional geometry of the micro actuator is considered. The starting torque obtained from the in-plane two-dimensional analytical solutions were compared with that of the actual three-dimensional FE analysis results. The starting torque is proportional to $V^2$, and that the two-dimensional analytical solutions are larger than the three- dimensional FE ones. It is found that the evaluation of micro actuator has to be considered electrical leakage phenomenon.

원전 주요기기의 3차원 피로수명 평가 (3-Dimensional Fatigue Life Evaluation for Major Components of Nuclear Power Plant)

  • 안민용;배성렬;박영재;장윤석;최재붕;김영진;정명조;최영환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.102-107
    • /
    • 2004
  • In general, major components of nuclear power plant have been evaluated based on 2-dimensional design codes conservatively. However, more exact assessment is necessary for continued operation beyond the design life. In this paper, 3-dimensional stress and fatigue analyses reflecting full geometry and monitored operating condition of reactor pressure vessel have been carried out. The analyses results showed that conservatism of current 2-dimensional evaluation based on design transient. Therefore, it is anticipated that the schemes developed from this research such as 3-dimensional finite element modeling, stress analysis and fatigue analysis related techniques can be utilized as fundamental tools for exact lifetime evaluation and license renewal of major nuclear components.

  • PDF

강-점소성 ALE 유한요소 수식화에 근거한 사각형 형재의 평금형 등온 압출에 대한 3차원 해석 (A Three-Dimensional Rigid-Viscoplastic Finite Element Analysis of isothermal Square Die Extrusion of a Square Section Based on ALE Description)

  • 강연식;양동열
    • 소성∙가공
    • /
    • 제5권1호
    • /
    • pp.55-60
    • /
    • 1996
  • In the finite element analysis of metal forming processes the updated Lagrangian approach has been widely and effectively used to simulate the non-steady state problems. however some difficulties have arisen from abrupt flow change as in extrusion through square dies. In the present work an ALE(arbitrary Lagrangian-Euleria) finite element formulation for deforma-tion analysis are presented fro rigid-viscoplastic materials. The developed finite element program is applied to the isothermal analysis of square die extrusion of a square section. The computational results are compared with those by the updated Lagrangian finite element analysis.

  • PDF

3D Finite element analysis of end - plate steel joints

  • Drosopoulos, G.A.;Stavroulakis, G.E.;Abdalla, K.M.
    • Steel and Composite Structures
    • /
    • 제12권2호
    • /
    • pp.93-115
    • /
    • 2012
  • This paper presents a numerical investigation of the mechanical behaviour of extended end - plate steel connections including comparison with full size experiments. Contact and friction laws have been taken into account with nonlinear, three dimensional finite element analysis. Material and geometric nonlinearities have been implemented to the model, as well. Results are then compared with experimental tests conducted at the Jordan University of Science and Technology. According to the most significant observation of the analysis, a separation of the column flange from the extended end - plate occurs. Other important structural parameters of the connection, like the impact of some column stiffeners on the overall response, local buckling of the column and friction of the beam to column interface, have been examined as well.

마이크로 액추에이터의 성능평가를 위한 FEA 시뮬레이션 (FEA Simulation for Performance Estimation of Micro Actuator)

  • 이양창;이준성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1045-1048
    • /
    • 2002
  • Micromachines are extremely novel artifacts with a variety of special characteristics. Utilizing their tiny dimensions ranging roughly from 10 to $1O^3$ micro-meters, the micromachines can perform tasks in a revolutionary manner that would be impossible for conventional artifacts. Micromachines are in general related to various coupled physical phenomena. They are required to be evaluated and designed considering the coupled phenomena. This paper describes finite element analysis (FEA) simulation of practical behaviors for the micro actuator. Especially, electric field modeling in micro actuators has been generally restricted to in-plane two-dimensional finite element analysis because of the complexity of the micro actuator geometry. However, in this thesis, the actual three-dimensional geometry of the micro actuator is considered. The starting torque obtained from the in-plane two-dimensional analytical solutions were compared with that of the actual three-dimensional FE analysis results. The starting torque is proportional to $V^2$, and that the two-dimensional analytical solutions are larger than the three-dimensional FE ones. It is found that the evaluation of micro actuator has to be considered electrical leakage phenomenon.

  • PDF