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Meshless Finite Element Analysis of Three-Dimensional Problems
Using Fuzzy Knowledge Processing
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ABSTRACT

This paper describes a meshless of element-free method based on fuzzy knowledge processing. To ef-
ficiently simulate complicated physical phenomena with dynamics and non-linear ploblem using com-
putational mechanics, special method is required such as parallel processing or adaptive analysis tech-
riques. However, the conventional finite element method is too complicated to be employed in the a-
bove cases. In order to reduce the above complexity of the conventional finite element analysis systems,
the so called meshless finite element methods, which do not require connectivity between nodes and ele-
ments as an input information have been stuided. Node is generated if its distance from existing node
points is similar to the node spacing function at the point. The node spacing function is well controlled
by the fuzzy knowledge processing. Practical performances of the present system are demonstrated

through several three-dimensional(3D) problems.

1. Introduction

The finite element method (FEM) has been widely
utilized in simulating various engineering problems
such as structural deformation, thermal conduction,
fluid dynamics, electromagnetics and so on. The
main reason for this is its high capability of dealing
with boundary-value problems in arbitrarily shaped
domains. On the other hand, a mesh used influences
computational accuracy as well as time so
significantly that the mesh generation process is as
much important as the FEM analysis itself. Especially,
in such large scale nonlinear FEM analyses that
approach the limitation of computational capability of
so-called supercomputers, it is highly demanded to
optimize the distribution of mesh size under the
condition of limited total degrees of freedom (DOFs).
Thus, thz mesh generation process becomes more
and more time-consuming and heavier tasks.

Loads for pre-processing and post-processing are
increasing, rapidly in accordance with an increase of
scale and complexity of analysis models to be solved.
Particularly, the mesh generation process, which
influences computational accuracy as efficiency and
whose fully automation is very difficult in 3D cases,
has becorne the most critical issue in a whole process
of the finite element analyses. In this respect, various
researches[1-13] have been performed on the develop-

ment of automatic mesh generation techniques.
However, in reality, general automatic mesh gen-
eration techniques have many limitations and concealed
experienced know-hows. And general procedure for
3D complex geometries has not been developed yet.

In another approach, meshless method, which do
not require mesh subdivisions[14,15], are thought to
be effective, since only nodal data is necessary. It will
make it easy to handle CAD data. Moreover, because
element subdivision processes become unnecessary,
adaptive method is expected to be realized easily. If
such techniques are established, they will be utilized
realizing CAD/CAE

seamless system from modeling to analysis.

as the core techniques for

The individual techniques in the present study are
adopted the practical geometric modelers and the
fuzzy knowledge processing. The present systems are
constructed in one of popular engineering work-
stations (EWS) using the C language under the Unix
environ- ment.

In the following sections, the fundamental principle
of the described. Finally,
practical performances of the developed systems are

present algorithm is
demonstrated through several 3D problems.

2. Outline of the System

2.1 Definition of Geometric Model
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Geometric modelers are utilized to define
geometries of analysis domains. One of commercial
geometric modelers, Designbase[16] is employed for
3D structures. The advantage of Designbase is that a
wide range of solid shapes from polyhedra to free-
form surfaces can be designed in a unified manner.
In these modelers, 3D geometric data are stored as a
tree structure of domain-surfaces (free-form surfaces
such as Bezier or Gregory type surfaces)-edge (B-

spline or Bezier type curves)-vertices.

2.2 Designation of Node Density Distributions

In this section, the connecting process of locally-
optimum mesh images is dealt with using the fuzzy
knowledge processing technique[17]. In the present
system, nodes are first generated. In general, it is not
so easy to well control size for a complex geometry.
A node density distribution over a whole geometry
model is constructed as follows. The present system
stores several local nodal patterns such as the pattern
suitable to well capture stress concentration, the
pattern to subdivide a finite domain uniformly, and
the pattern to subdivide a whole domain uniformly.
A user selects some of those local nodal patterns,
depending on their analysis purposes, and designates

Node pattern 1

(@)

(b)

J

Fig. 1. Example of local node patterns.

where to locate them.

For example, when either the crack of the hole
exists solely in an infinite domain, the local node
patterns as shown in Figs. 1(a) and 1(b) may be
regarded locally-optimum around the crack tip or the
hole, respectively. When these stress concentration
fields exist closely to each other in the same analysis
domain, a simple superposition of both local node
patterns gives the result as shown in Fig. 2(b).
Namely, extra nodes have to be removed from the
superposed region of both patterns.

In the present method, the field A close to the hole
and the field B close to the crack-tip are defined in
terms of the membership functions used in the fuzzy
set theory as shown in Fig. 2(c). For the purpose of
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Fig. 2. Superposition of node patterns based on fuzzy
theory.
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simplicity, each membership function is given a
function of one-dimension in the figure. In practice
the membership function can be expressed as U(x, y)
in this particular example, and in 3D cases it is a
functior. of 3D coordinates, i.e. p(x, y, z). In Fig.
2(c), the horizontal axis denotes the location, while
the vertical axis does the value of membership
the of
location stress

which indicates
of the
concentration field. That is, a nodal location closer to

function, magnitude

“closeness” to each
the stress concentration field takes a larger value of
the membership function. As for Figs. 2(b) and 2(c),
choosing the mesh pattern with a larger value of the
membership function in each location, one can obtain
an overlapped curve of both membership functions,
and the domain can be automatically divided into the
following two sub-domains A and B as shown in Fig.
2(d) : the sub-domain close to the crack-tip and that
of the hole. Finally, both node patterns are smoothly
connected as shown in Fig. 2(¢). This procedure of
node generation, ie. the connection procedure of
both node patterns, is summarized as follows :

o If Ha(Xp ¥p) = Ha(Xp, p) for a mode p (x5, yp)
belonging to the pattern A, then the node p is
generated, and otherwise p is not generated.

“If Palke ¥9) = Ha(ke ¥o) for a node g (%, y,)
belonging to the pattern B, then the node q is
generated, and otherwise q is not generated.

It is apparent that the above algorithm can be
easily extended to 3D problems and any number of
node patterns. In addition, since finer node patterns
are generally required to place near stress
concentration sources, it is convenient to let the
membership function correspond to node density as
well. According to this definition, Fig. 2(d) also
indicates the distribution of node density over the
whole analysis domain including the two stress

concentration fields.

2.3 Basic algorithm of meshless method

Fig. 3 shows a basic idea of meshless method as an
example without any loss of generality. On each node
prepared the
triangular elements are first created by using the node /,

in domain beforehand, temporary

which is called as a central node, and its surrounding

nodes m, n, o, p, ..., called as satellite nodes. In the 3D

@ current central node

@ current satellite node

Fig. 3. Temporary triangular clements around node I

solid case, a hexahedron is utilized. On each temporary
element, an element matrix is calculated in the next.
Third, only the row components of the element matrix,
which relate to the central node, are added to the
pertinent row of the total stiffness matrix.

More precisely, the satellite nodes m, n, o, p, ...,
for the central node [ are first selected. Second, these
selected satellite nodes are sorted by clock-wise (or
counter clock wise) order with m, say, being the
starting node. Third, temporary triangles such as [-m-
n, l-n-o, l-o-p, ..., are created by using the central
node / and two neighbouring nodes such as m-n, n-o,
o-p,
stiffness matrix is calculated from these triangular

..., tespectively. The contribution to the total

temporary elements. For example, and element matrix
[k]sm is calculated from the triangle /-m-n, and the
node ! row components of the element matrix [k]m
are added to the node 1 row components of the total
This
throughout all the elements around the node /.

stiffness  matrix. process is performed

It is noted that, in this algorithm, the total stiffness
matrix can be evaluated in parallel with respect to
each node, and only information about the satellite
nodes around the central node is required with each
nodal calculation. Therefore, the calculation has an
excellent feature of locality of data reference, and
then it is considered to be suitable for distributed
parallel processing. It is also noteworthy that the
cumbersome mesh generation process is avoided. The
solution process of the linear equation with the total
stiffness matrix can be performed using one of the
parallel linear equation solvers such as parallel direct

solvers. In the present method, the selection process
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of satellite nodes is necessary to be performed
instead of the conventional mesh eneration process.
This process can be performed efficiently on any
distributed parallel processing environment.

2.4 Selection Algorithm of Satellite Nodes

The selection process of the satellite nodes may
have strong influence of the accuracy of solution and
the execution time of analysis. Fig. 4 shows an
of the
processes, which causes the error in the solution : In

example the mismatch in triangulation
Fig. 4(a), the triangle l-m-o may be adopted with
calculation of the central node /, while, in Fig. 2(b),
another triangle o-I-n with calculation of the central
node o. As is well known, the total stiffness matrix
thus obtained becomes non-symmetric, which leads
the

process of the satellite nodes should be such that the

to erroneous solution. Therefore, selection
manners of the triangulations are always as same as
possible. If it is the case, the solution of the present
method becomes equal to that of the conventional
finite element method.

In this context, an algorithm for the optimized
selection of the satellite nodes is proposed. The basic
idea is very simple and given as follows. Let us take
a polygon l-m-n-o in Fig. 4. If the length of segment
I-n is shorter than that of m-o, then the node n is
taken as a satellite node for the central node [ and
triangles I-m-n and [-n-o are adopted. If it is not the
case, the node n is temporarily deleted and triangle /-
m-o is adopted. This algorithm is summarized in a
systematic manner as follows.

(2) A set of nodes around the central node / are
selected roughly as candidates of the satellite nodes.

For example, the candidate nodes are selected in

Jj o

(a) the case when [ being a central node

such a manner that they are within the circle, whose
center is located at the central node [ and the radius
of the circle is a function of the node density at the
central node.

(b) Segments made of any possible pairs out of
candidate nodes m, n, o, p, ..., such as m-o, m-p, n-p,
..., are sorted by the order of their length as shown in
Fig. 5(a).

(c) Starting from the shortest the
following process is performed throughout all the

segment,

segments above. Let's take the segment m-p for
example, where candidate nodes n and o are located
outside from the segment as shown in Fig. 5(b).
Whether the nodes n and o are selected as the
satellite nodes or not depends on the relation between
the length of the segment m-p and the distances from
the central node / to the candidate node r and o,
respectively. If the segment length m-p is longer than
that of /-n, the node n is taken as a satellite one, and
vise versa. The node o is similarly examined.

(d) After a set of the satellite nodes around the
node / are decided by the above process out of the
candidate nodes, a set of triangles are created in a
radial topology using the satellite nodes with the
central node ! being the common node as shown in
Fig. 1. Then, the calculation of element matrices and
assemble process into the total stiffness matrix are
performed according to the method described in the
previous section.

(e) The process from (a) through (d) above are
performed throughout the nodes in the domain.

3. Examples

The present method was applied to two-dimensio-

o

(b) the case when o being a central node

Fig. 4. Mismatch in triangulation processes.
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{b) nodes n and o outside diagonal segment m-p
Fig. 5. Selection algorithm of satellite nodes.

nal static heat conduction problem to show the
performance and accuracy. Fig. 6 shows the analysis
Table 1 shows the
comparisons of temperature values obtained at four
points A, B, C and D along the top edge of the
domain between the method and the
conventional method. Here, the conventional method

domain and the conditions.

present

means the finite element method with the mesh using
method
employs the same nodal pattern as in the above

the Delaunay triangulation. The present
Delaunay triangulation.

Applying the present scheme to the nodal pattern
shown in Fig. 7, it is shown that no mismatch of
triangles occurs. This means that a mesh for this
domain is created implicitly by this method and that
the small difference between the present solution and
that of the Delaunay mesh attributes to the difference
of the mesh topology seen at a few parts of the

domain between the two methods.

10 C
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Fig. 6. Analysis shape and analysis conditions.

As an example of the three-dimensional solid
analysis, a transient heat conduction problem was
analyzed. The temperature of a piston head, as
shown in Fig. 8, was initially set 100°C throughout.
Top face and outer face of the piston head had a
temperature of 0°C. The other faces were insulated.
The temperature of the piston head was calculated
for subsequent times (0 to 10 secs). In this problem,
material properties selected were : thermal con-
ductivity of 1.0 J/(m - s - °C), specific heat of 1.0
J/(kg - °C) and mass density of 1.0 kg/m’.

Table 1. Analysis result for temperature at A, B, C and D

Location Conventional FEM Present
A 1.450043 1.450019
B 2.048639 2.048665
C 3.681370 3.681408
D 7.537236 7.537259

Fig. 7. Nodal pattern.
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Top face and outer face :
nodal temperature of 0° C

Fig. 8. Geometry model of piston head.

The initial temperature at all nodes was 100°C. At
time t=0, top and outer face have a prescribed
temperature of 0°C ; all other surfaces are adiabatic
and require no data input. A transient solution is
performed with 10 uniform time steps of 0.1 seconds
each for a total time of 1 second.

Fig. 9 shows an appearance of nodes. Also, the
present method employs the same nodal pattern as in
the Delaunay triangulation. In order to show the
the
commercial finite element analysis codes is used. Fig.
10(a) and (b) show a calculated distribution of

performance of present method, one of

Fig. 9. Appearance of node generation.

(b) at 1 sec
Fig. 10. Distribution of temperature.

Table 2. Analysis result for temperature at A, B and C

Time Location  Conventional FEM  Present
A 92.9432 92.9431

0.3 sec B 97.3983 97.9981
C 78.3984 78.3986

A 74.9867 74.9899

1.0 sec B 99.9999 99.9878
C 43.4982 43.4911

temperature at 0.3 and 1 second, respectively. Table 2
the comparisons of
obtained at three points A, B, and C of the piston

shows temperature  values
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method and the
commercial finite element analysis code. It can be

domain between the present

seen from the table that the present methods agree
well with the conventional methods within 2 to 3%
difference.

4. Conclusions

In this paper, a novel type of meshless finite
element method, which does not require connectivity
information between elements and nodes. In this
method, a set of triangular or tetrahedral elements are
temporarily created around each node, then the total
stiffness matrix is obrained by adding the row
components of the temporary element matrices to the
relevant row components of the total stiffness matrix.

It is shwon that nearly the same solution as the

conventional finite e¢lement method using the

Delaunay mesh is obtained under the condition of
complicated distribution pattern of nodes. In this
regard, the present method could be employed as a
new mesh generation technique.
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