• Title/Summary/Keyword: 3-dimensional Dynamic images reconstruction system

Search Result 6, Processing Time 0.021 seconds

Implementation of 3D Video using Time-Shortening Algorithm (시간단축 알고리즘을 통한 3D 동영상 구현)

  • Shin, Jin-Seob;Jeong, Chan-Woong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.123-128
    • /
    • 2020
  • In this paper, we presents a new cone beam computerized tomography (CBCT) system for the reconstruction of 3 dimensional dynamic images. The system using cone beam has less the exposure of radioactivity than fan beam, relatively. In the system, the reconstruction 3-D image is reconstructed with the radiation angle of X-ray in the image processing unit and transmitted to the monitor. And in the image processing unit, the Three Pass Shear Matrices, a kind of Rotation-based method, is applied to reconstruct 3D image because it has less transcendental functions than the one-pass shear matrix to decrease a time of calculations for the reconstruction 3-D image in the processor. The new system is able to get 3~5 3-D images a second, reconstruct the 3-D dynamic images in real time. And we showed the Rotation-based method was good rather than existing reconstruction technique for 3D images, also found weakness and a solution for it.

The Study on the Implementation of the X-Ray CT System Using the Cone-Beam for the 3D Dynamic Image Acquisition (3D 동영상획득을 위한 Cone-Beam 형 X-Ray CT 시스템 구현에 관한 연구)

  • Jeong, Chan-Woong;Jun, Kyu-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.370-374
    • /
    • 2009
  • In this paper, we presents a new cone beam computerized tomography (CB CT) system for the reconstruction of 3 dimensional dynamic images. The system using cone beam has less the exposure of radioactivity than fan beam, relatively. In the system, the reconstruction 3-D image is reconstructed with the radiation angle of X-ray in the image processing unit and transmitted to the monitor. And in the image processing unit, the Three Pass Shear Matrices, a kind of Rotation-based method, is applied to reconstruct 3D image because it has less transcendental functions than the one-pass shear matrix to decrease a time of calculations for the reconstruction 3-D image in the processor. The new system is able to get 3~5 3-D images a second, reconstruct the 3-D dynamic images in real time.

The Algorithm Improved the Speed for the 3-Dimensional CT Video Composition (3D CT 동영상 구성을 위한 속도 개선 알고리즘)

  • Jeong, Chan-Woong;Park, Jin-Woo;Jun, Kyu-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.141-147
    • /
    • 2009
  • This paper presents a new fast algorithm, rotation-based method (RBM), for the reconstruction of 3 dimensional image for cone beam computerized tomography (CB CT) system. The system used cone beam has less exposure time of radioactivity than fan beam. The Three-Pass Shear Matrices (TPSM) is applied, that has less transcendental functions than the one-pass shear method to decrease a time of calculations in the computer. To evaluate the quality of the 3-D images and the time for the reconstruction of the 3-D images, another 3-D images were reconstructed by the radon transform under the same condition. For the quality of the 3-D images, the images by radon transform was shown little good quality than REM. But for the time for the reconstruction of the 3-D images REM algorithm was 35 times faster than radon transform. This algorithm offered $4{\sim}5$ frames a second. It meant that it will be possible to reconstruct the 3-D dynamic images in real time.

Comparison of Volumes between Four-Dimensional Computed Tomography and Cone-Beam Computed Tomography Images using Dynamic Phantom (호흡동조전산화단층촬영과 콘빔전산화단층촬영의 팬텀 영상 체적비교)

  • Kim, Seong-Eun;Won, Hui-Su;Hong, Joo-Wan;Chang, Nam-Jun;Jung, Woo-Hyun;Choi, Byeong-Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • Purpose : The aim of this study was to compare the differences between the volumes acquired with four-dimensional computed tomography (4DCT)images with a reconstruction image-filtering algorithm and cone-beam computed tomography (CBCT) images with dynamic phantom. Materials and Methods : The 4DCT images were obtained from the computerized imaging reference systems (CIRS) phantom using a computed tomography (CT) simulator. We analyzed the volumes for maximum intensity projection (MIP), minimum intensity projection (MinIP) and average intensity projection (AVG) of the images obtained with the 4DCT scanner against those acquired from CBCT images with CT ranger tools. Results : Difference in volume for node of 1, 2 and 3 cm between CBCT and 4DCT was 0.54~2.33, 5.16~8.06, 9.03~20.11 ml in MIP, respectively, 0.00~1.48, 0.00~8.47, 1.42~24.85 ml in MinIP, respectively and 0.00~1.17, 0.00~2.19, 0.04~3.35 ml in AVG, respectively. Conclusion : After a comparative analysis of the volumes for each nodal size, it was apparent that the CBCT images were similar to the AVG images acquired using 4DCT.

  • PDF

Usefulness of Three-Dimensional Maximal Intensity Projection (MIP) Reconstruction Image in Breast MRI (유방자기공명영상에서 3 차원 최대 강도 투사 재건 영상의 유용성)

  • Kim, Hyun-Sung;Kang, Bong-Joo;Kim, Sung-Hun;Choi, Jae-Jeong;Lee, Ji-Hye
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.183-189
    • /
    • 2009
  • Purpose : To evaluate the usefulness of three-dimensional (3D) maximal intensity projection (MIP) reconstruction method in breast MRI. Materials and Methods : Total 54 breasts of consecutive 27 patients were examined by breast MRI. Breast MRI was performed using GE Signa Excite Twin speed (GE medical system, Wisconsin, USA) 1.5T. We obtained routine breast MR images including axial T2WI, T1WI, sagittal T1FS, dynamic contrast-enhanced T1FS, and subtraction images. 3D MIP reconstruction images were obtained as follows; subtraction images were obtained using TIPS and early stage of contrast-enhanced TIPS images. And then 3D MIP images were obtained using the subtraction images through advantage workstation (GE Medical system). We detected and analyzed the lesions in the 3D MIP and routine MRI images according to ACR $BIRADS^{(R)}$ MRI lexicon. And then we compared the findings of 3D MIP and those of routine breast MR images and evaluated whether 3D MIP had additional information comparing to routine MR images. Results : 3D MIP images detect the 43 of 56 masses found on routine MR images (76.8%). In non-mass like enhancement, 3D MIP detected 17 of 20 lesions (85 %). And there were one hundred sixty nine foci at 3D MIP images and one hundred nine foci at routine MR images. 3D MIP images detected 14 of 23 category 3 lesions (60.9%), 11 of 16 category 4 lesions (68.87%), 28 of 28 Category 5 lesions (100%). In analyzing the enhancing lesions at 3D MIP images, assessment categories of the lesions were correlated as the results at routine MR images (p-value < 0.0001). 3D MIP detected additional two daughter nodules that were descriped foci at routine MR images and additional one nodule that was not detected at routine MR images. Conclusion : 3D MIP image has some limitations but is useful as additional image of routine breast MR Images.

  • PDF

Design and Implementation of Digital Electrical Impedance Tomography System (디지털 임피던스 영상 시스템의 설계 및 구현)

  • 오동인;백상민;이재상;우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.269-275
    • /
    • 2004
  • Different biological tissues have different values of electrical resistivity. In EIT (electrical impedance tomography), we try to provide cross-sectional images of a resistivity distribution inside an electrically conducting subject such as the human body mainly for functional imaging. However, it is well known that the image reconstruction problem in EIT is ill-posed and the quality of a reconstructed image highly depends on the measurement error. This requires us to develop a high-performance EIT system. In this paper, we describe the development of a 16-channel digital EIT system including a single constant current source, 16 voltmeters, main controller, and PC. The system was designed and implemented using the FPGA-based digital technology. The current source injects 50KHz sinusoidal current with the THD (total harmonic distortion) of 0.0029% and amplitude stability of 0.022%. The single current source and switching circuit reduce the measurement error associated with imperfect matching of multiple current sources at the expense of a reduced data acquisition time. The digital voltmeter measuring the induced boundary voltage consists of a differential amplifier, ADC, and FPGA (field programmable gate array). The digital phase-sensitive demodulation technique was implemented in the voltmeter to maximize the SNR (signal-to-noise ratio). Experimental results of 16-channel digital voltmeters showed the SNR of 90dB. We used the developed EIT system to reconstruct resistivity images of a saline phantom containing banana objects. Based on the results, we suggest future improvements for a 64-channel muff-frequency EIT system for three-dimensional dynamic imaging of bio-impedance distributions inside the human body.