Usefulness of Three-Dimensional Maximal Intensity Projection (MIP) Reconstruction Image in Breast MRI

유방자기공명영상에서 3 차원 최대 강도 투사 재건 영상의 유용성

  • Kim, Hyun-Sung (Department of Radiology, The Catholic University of Korea) ;
  • Kang, Bong-Joo (Department of Radiology, The Catholic University of Korea) ;
  • Kim, Sung-Hun (Department of Radiology, The Catholic University of Korea) ;
  • Choi, Jae-Jeong (Department of Radiology, The Catholic University of Korea) ;
  • Lee, Ji-Hye (Department of Radiology, The Catholic University of Korea)
  • 김현성 (가톨릭대학교 의과대학 영상의학과) ;
  • 강봉주 (가톨릭대학교 의과대학 영상의학과) ;
  • 김성헌 (가톨릭대학교 의과대학 영상의학과) ;
  • 최재정 (가톨릭대학교 의과대학 영상의학과) ;
  • 이지혜 (가톨릭대학교 의과대학 영상의학과)
  • Published : 2009.12.30

Abstract

Purpose : To evaluate the usefulness of three-dimensional (3D) maximal intensity projection (MIP) reconstruction method in breast MRI. Materials and Methods : Total 54 breasts of consecutive 27 patients were examined by breast MRI. Breast MRI was performed using GE Signa Excite Twin speed (GE medical system, Wisconsin, USA) 1.5T. We obtained routine breast MR images including axial T2WI, T1WI, sagittal T1FS, dynamic contrast-enhanced T1FS, and subtraction images. 3D MIP reconstruction images were obtained as follows; subtraction images were obtained using TIPS and early stage of contrast-enhanced TIPS images. And then 3D MIP images were obtained using the subtraction images through advantage workstation (GE Medical system). We detected and analyzed the lesions in the 3D MIP and routine MRI images according to ACR $BIRADS^{(R)}$ MRI lexicon. And then we compared the findings of 3D MIP and those of routine breast MR images and evaluated whether 3D MIP had additional information comparing to routine MR images. Results : 3D MIP images detect the 43 of 56 masses found on routine MR images (76.8%). In non-mass like enhancement, 3D MIP detected 17 of 20 lesions (85 %). And there were one hundred sixty nine foci at 3D MIP images and one hundred nine foci at routine MR images. 3D MIP images detected 14 of 23 category 3 lesions (60.9%), 11 of 16 category 4 lesions (68.87%), 28 of 28 Category 5 lesions (100%). In analyzing the enhancing lesions at 3D MIP images, assessment categories of the lesions were correlated as the results at routine MR images (p-value < 0.0001). 3D MIP detected additional two daughter nodules that were descriped foci at routine MR images and additional one nodule that was not detected at routine MR images. Conclusion : 3D MIP image has some limitations but is useful as additional image of routine breast MR Images.

목적 : 유방자기공명영상에서 3 차원 최대 강도 투사 (3D MIP) 재건 영상의 유용성을 알아보고자 하였다. 대상 및 방법 : 유방암으로 진단받고 유방자기공명영상을 시행한 27명의 환자의 54개의 유방을 대상으로 하였다. GE Signa Excite Twin speed (GE medical system, Wisconsin, USA) 1.5 T 기기를 이용하여 기본 영상으로 축면 T2 강조 T1 강조 영상과 시상면 T1 강조 지방 억제 영상, 역동적 조영 증강 영상과 감산 영상을 얻었다. 이후 초기 역동적 조영증강 영상의 감산영상으로 워크스테이견 (GE Medical system)을 이용하여 3D MIP 영상을 얻었다. 3D MIP 영상과 기본 유방자기공명영상에서 발견된 병변을 ACR BI-$RADS^{(R)}$ MRI lexicon에 따라 분석하였다. 각각의 영상에서 발견된 병변의 소견들을 비교하고 3D MIP에서 기본자기공명영상에서 보다 추가적인 정보를 얻을 수 있는지 알아보았다. 결과 : 종괴의 경우 기본 유방자기공명영상에서 보이는 56개 중 43개가 3D MIP 영상에서 발견되었다 (76.8%). 비종괴성 조영 증강의 경우 20개 중 17개가 발견되었다 (85%). 169개의 초점성 조영증강 병변이 3D MIP 영상에서, 109개가 기본 유방자기공명영상에서 확인되었다. 3D MIP 영상에서 60.9%의 category 3병변이 발견되었고(14/23), 68.87%의 category 4 병변 (11/16), 100%의 category 5병변 (28/28)이 발견되었다. 3D MIP 영상에서 분석된 조영증강 병변들의 category가 기본 유방 자기공명 영상의 결과들과 통계적으로 일치하였다(p-value < 0.0001). 기본 유방 자기공명 영상에서 초점으로 분석된 2개의 병변들이 3D MIP 영상에서는 다초점성의 악성 병변으로 발견되었고, 1개의 추가적 병변이 3D MIP 영상에서만 발견되었다. 결론 : 3D MIP 영상은 한계점들을 갖고 있으나, 기본 유방자기공명영상의 분석에 있어 추가적으로 이용 시 유용하다.

Keywords

References

  1. Ahn SH, Yoo KY, the Korean Breast Cancer Society. Chronological changes of clinical characteristics in 31,115 new breast cancer patients among Koreans during 1996-2004. Breast Cancer Res Treat 2006;99:209-214 https://doi.org/10.1007/s10549-006-9188-x
  2. Fischer U, Kopka L, Grabbe E. Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology 1999;213:881-888 https://doi.org/10.1148/radiology.213.3.r99dc01881
  3. Hata T, Takahashi H, Watanabe K, et al. Magnetic resonance imaging for preoperative evaluation of breast cancer: a comparative study with mammography and ultrasonography. J Am Coll Surg 2004;198:190-197 https://doi.org/10.1016/j.jamcollsurg.2003.10.008
  4. Gilles R, Guinebretiere JM, Lucidarme O, et al. Nonpalpable breast tumors: diagnosis with contrast enhanced subtraction dynamic MR imaging. Radiology 1994;191:625-631 https://doi.org/10.1148/radiology.191.3.8184038
  5. Bone B, Aspelin P, Bronge L, Isberg B, Perbeck L, Veress B. Sensitivity and specificity of MR mammography with histopathological correlation in 250 breasts. Acta Radiol 1996;37:208-213 https://doi.org/10.1177/02841851960371P143
  6. Helbich TH, Becherer A, Trattnig S, et al. Differentiation of benign and malignant breast lesions: MR imaging versus Tc-99m sestamibi scintimammography. Radiology1997;202:421-429 https://doi.org/10.1148/radiology.202.2.9015068
  7. Frei KA, Kinkel K, Bonel HM, Lu Y, Esserman LJ, Hylton NM. MR imaging of the breast in patients with positive margins after lumpectomy: influence of the time interval between lumpectomy and MR imaging. AJR Am J Roentgenol 2000;175:1577-1584 https://doi.org/10.2214/ajr.175.6.1751577
  8. American College of Radiology. Breast Imaging Reporting and Data System (BI-RADS) Atlas. 4th ed. Reston, VA: American College of Radiology, 2003.