• Title/Summary/Keyword: 3-dimensional Dynamic images reconstruction

Search Result 10, Processing Time 0.027 seconds

Effectual Method FOR 3D Rebuilding From Diverse Images

  • Leung, Carlos Wai Yin;Hons, B.E.
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.145-150
    • /
    • 2008
  • This thesis explores the problem of reconstructing a three-dimensional(3D) scene given a set of images or image sequences of the scene. It describes efficient methods for the 3D reconstruction of static and dynamic scenes from stereo images, stereo image sequences, and images captured from multiple viewpoints. Novel methods for image-based and volumetric modelling approaches to 3D reconstruction are presented, with an emphasis on the development of efficient algorithm which produce high quality and accurate reconstructions. For image-based 3D reconstruction a novel energy minimisation scheme, Iterated Dynamic Programming, is presented for the efficient computation of strong local minima of discontinuity preserving energyy functions. Coupled with a novel morphological decomposition method and subregioning schemes for the efficient computation of a narrowband matching cost volume. the minimisation framework is applied to solve problems in stereo matching, stereo-temporal reconstruction, motion estimation, 2D image registration and 3D image registration. This thesis establishes Iterated Dynamic Programming as an efficient and effective energy minimisation scheme suitable for computer vision problems which involve finding correspondences across images. For 3D reconstruction from multiple view images with arbitrary camera placement, a novel volumetric modelling technique, Embedded Voxel Colouring, is presented that efficiently embeds all reconstructions of a 3D scene into a single output in a single scan of the volumetric space under exact visibility. An adaptive thresholding framework is also introduced for the computation of the optimal set of thresholds to obtain high quality 3D reconstructions. This thesis establishes the Embedded Voxel Colouring framework as a fast, efficient and effective method for 3D reconstruction from multiple view images.

  • PDF

The Algorithm Improved the Speed for the 3-Dimensional CT Video Composition (3D CT 동영상 구성을 위한 속도 개선 알고리즘)

  • Jeong, Chan-Woong;Park, Jin-Woo;Jun, Kyu-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.141-147
    • /
    • 2009
  • This paper presents a new fast algorithm, rotation-based method (RBM), for the reconstruction of 3 dimensional image for cone beam computerized tomography (CB CT) system. The system used cone beam has less exposure time of radioactivity than fan beam. The Three-Pass Shear Matrices (TPSM) is applied, that has less transcendental functions than the one-pass shear method to decrease a time of calculations in the computer. To evaluate the quality of the 3-D images and the time for the reconstruction of the 3-D images, another 3-D images were reconstructed by the radon transform under the same condition. For the quality of the 3-D images, the images by radon transform was shown little good quality than REM. But for the time for the reconstruction of the 3-D images REM algorithm was 35 times faster than radon transform. This algorithm offered $4{\sim}5$ frames a second. It meant that it will be possible to reconstruct the 3-D dynamic images in real time.

Implementation of 3D Video using Time-Shortening Algorithm (시간단축 알고리즘을 통한 3D 동영상 구현)

  • Shin, Jin-Seob;Jeong, Chan-Woong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.123-128
    • /
    • 2020
  • In this paper, we presents a new cone beam computerized tomography (CBCT) system for the reconstruction of 3 dimensional dynamic images. The system using cone beam has less the exposure of radioactivity than fan beam, relatively. In the system, the reconstruction 3-D image is reconstructed with the radiation angle of X-ray in the image processing unit and transmitted to the monitor. And in the image processing unit, the Three Pass Shear Matrices, a kind of Rotation-based method, is applied to reconstruct 3D image because it has less transcendental functions than the one-pass shear matrix to decrease a time of calculations for the reconstruction 3-D image in the processor. The new system is able to get 3~5 3-D images a second, reconstruct the 3-D dynamic images in real time. And we showed the Rotation-based method was good rather than existing reconstruction technique for 3D images, also found weakness and a solution for it.

The Study on the Implementation of the X-Ray CT System Using the Cone-Beam for the 3D Dynamic Image Acquisition (3D 동영상획득을 위한 Cone-Beam 형 X-Ray CT 시스템 구현에 관한 연구)

  • Jeong, Chan-Woong;Jun, Kyu-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.370-374
    • /
    • 2009
  • In this paper, we presents a new cone beam computerized tomography (CB CT) system for the reconstruction of 3 dimensional dynamic images. The system using cone beam has less the exposure of radioactivity than fan beam, relatively. In the system, the reconstruction 3-D image is reconstructed with the radiation angle of X-ray in the image processing unit and transmitted to the monitor. And in the image processing unit, the Three Pass Shear Matrices, a kind of Rotation-based method, is applied to reconstruct 3D image because it has less transcendental functions than the one-pass shear matrix to decrease a time of calculations for the reconstruction 3-D image in the processor. The new system is able to get 3~5 3-D images a second, reconstruct the 3-D dynamic images in real time.

Advanced Methods in Dynamic Contrast Enhanced Arterial Phase Imaging of the Liver

  • Kim, Yoon-Chul
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Dynamic contrast enhanced (DCE) magnetic resonance (MR) imaging plays an important role in non-invasive detection and characterization of primary and metastatic lesions in the liver. Recently, efforts have been made to improve spatial and temporal resolution of DCE liver MRI for arterial phase imaging. Review of recent publications related to arterial phase imaging of the liver indicates that there exist primarily two approaches: breath-hold and free-breathing. For breath-hold imaging, acquiring multiple arterial phase images in a breath-hold is the preferred approach over conventional single-phase imaging. For free-breathing imaging, a combination of three-dimensional (3D) stack-of-stars golden-angle sampling and compressed sensing parallel imaging reconstruction is one of emerging techniques. Self-gating can be used to decrease respiratory motion artifact. This article introduces recent MRI technologies relevant to hepatic arterial phase imaging, including differential subsampling with Cartesian ordering (DISCO), golden-angle radial sparse parallel (GRASP), and X-D GRASP. This article also describes techniques related to dynamic 3D image reconstruction of the liver from golden-angle stack-of-stars data.

Comparison of Volumes between Four-Dimensional Computed Tomography and Cone-Beam Computed Tomography Images using Dynamic Phantom (호흡동조전산화단층촬영과 콘빔전산화단층촬영의 팬텀 영상 체적비교)

  • Kim, Seong-Eun;Won, Hui-Su;Hong, Joo-Wan;Chang, Nam-Jun;Jung, Woo-Hyun;Choi, Byeong-Don
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • Purpose : The aim of this study was to compare the differences between the volumes acquired with four-dimensional computed tomography (4DCT)images with a reconstruction image-filtering algorithm and cone-beam computed tomography (CBCT) images with dynamic phantom. Materials and Methods : The 4DCT images were obtained from the computerized imaging reference systems (CIRS) phantom using a computed tomography (CT) simulator. We analyzed the volumes for maximum intensity projection (MIP), minimum intensity projection (MinIP) and average intensity projection (AVG) of the images obtained with the 4DCT scanner against those acquired from CBCT images with CT ranger tools. Results : Difference in volume for node of 1, 2 and 3 cm between CBCT and 4DCT was 0.54~2.33, 5.16~8.06, 9.03~20.11 ml in MIP, respectively, 0.00~1.48, 0.00~8.47, 1.42~24.85 ml in MinIP, respectively and 0.00~1.17, 0.00~2.19, 0.04~3.35 ml in AVG, respectively. Conclusion : After a comparative analysis of the volumes for each nodal size, it was apparent that the CBCT images were similar to the AVG images acquired using 4DCT.

  • PDF

Usefulness of Three-Dimensional Maximal Intensity Projection (MIP) Reconstruction Image in Breast MRI (유방자기공명영상에서 3 차원 최대 강도 투사 재건 영상의 유용성)

  • Kim, Hyun-Sung;Kang, Bong-Joo;Kim, Sung-Hun;Choi, Jae-Jeong;Lee, Ji-Hye
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.183-189
    • /
    • 2009
  • Purpose : To evaluate the usefulness of three-dimensional (3D) maximal intensity projection (MIP) reconstruction method in breast MRI. Materials and Methods : Total 54 breasts of consecutive 27 patients were examined by breast MRI. Breast MRI was performed using GE Signa Excite Twin speed (GE medical system, Wisconsin, USA) 1.5T. We obtained routine breast MR images including axial T2WI, T1WI, sagittal T1FS, dynamic contrast-enhanced T1FS, and subtraction images. 3D MIP reconstruction images were obtained as follows; subtraction images were obtained using TIPS and early stage of contrast-enhanced TIPS images. And then 3D MIP images were obtained using the subtraction images through advantage workstation (GE Medical system). We detected and analyzed the lesions in the 3D MIP and routine MRI images according to ACR $BIRADS^{(R)}$ MRI lexicon. And then we compared the findings of 3D MIP and those of routine breast MR images and evaluated whether 3D MIP had additional information comparing to routine MR images. Results : 3D MIP images detect the 43 of 56 masses found on routine MR images (76.8%). In non-mass like enhancement, 3D MIP detected 17 of 20 lesions (85 %). And there were one hundred sixty nine foci at 3D MIP images and one hundred nine foci at routine MR images. 3D MIP images detected 14 of 23 category 3 lesions (60.9%), 11 of 16 category 4 lesions (68.87%), 28 of 28 Category 5 lesions (100%). In analyzing the enhancing lesions at 3D MIP images, assessment categories of the lesions were correlated as the results at routine MR images (p-value < 0.0001). 3D MIP detected additional two daughter nodules that were descriped foci at routine MR images and additional one nodule that was not detected at routine MR images. Conclusion : 3D MIP image has some limitations but is useful as additional image of routine breast MR Images.

  • PDF

A Three-dimensional Biomechanical Model for Numerical Simulation of Dynamic Pressure Functional Performances of Graduated Compression Stocking (GCS)

  • Liu, Rong;Kwok, Yi-Lin;Li, Yi;Lao, Terence-T;Zhang, Xin;Dai, Xiao-Qun
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.389-397
    • /
    • 2006
  • The beneficial effects of graduated compression stockings (GCS) in prophylaxis and treatment of venous disorders of human lower extremity have been recognized. However, their pressure functional performances are variable and unstable in practical applications, and the exact mechanisms of action remain controversial. Direct surface pressure measurements and indirect material properties testing are not enough for fully understanding the interaction between stocking and leg. A three dimensional (3D) biomechanical mathematical model for numerically simulating the interaction between leg and GCS in dynamic wear was developed based on the actual geometry of the female leg obtained from 3D reconstruction of MR images and the real size and mechanical properties of the compression stocking prototype. The biomechanical solid leg model consists of bones and soft tissues, and an orthotropic shell model is built for the stocking hose. The dynamic putting-on process is simulated by defining the contact of finite relative sliding between the two objects. The surface pressure magnitude and distribution along the different height levels of the leg and stress profiles of stockings were simulated. As well, their dynamic alterations with time processing were quantitatively analyzed. Through validation, the simulated results showed a reasonable agreement with the experimental measurements, and the simulated pressure gradient distribution from the ankle to the thigh (100:67:30) accorded with the advised criterion by the European committee for standardization. The developed model can be used to predict and visualize the dynamic pressure and stress performances exerted by compression stocking in wear, and to optimize the material mechanical properties in stocking design, thus, helping us understand mechanisms of compression action and improving medical functions of GCS.

Moving Object Extraction and Relative Depth Estimation of Backgrould regions in Video Sequences (동영상에서 물체의 추출과 배경영역의 상대적인 깊이 추정)

  • Park Young-Min;Chang Chu-Seok
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.247-256
    • /
    • 2005
  • One of the classic research problems in computer vision is that of stereo, i.e., the reconstruction of three dimensional shape from two or more images. This paper deals with the problem of extracting depth information of non-rigid dynamic 3D scenes from general 2D video sequences taken by monocular camera, such as movies, documentaries, and dramas. Depth of the blocks are extracted from the resultant block motions throughout following two steps: (i) calculation of global parameters concerned with camera translations and focal length using the locations of blocks and their motions, (ii) calculation of each block depth relative to average image depth using the global parameters and the location of the block and its motion, Both singular and non-singular cases are experimented with various video sequences. The resultant relative depths and ego-motion object shapes are virtually identical to human vision.

Design and Implementation of Digital Electrical Impedance Tomography System (디지털 임피던스 영상 시스템의 설계 및 구현)

  • 오동인;백상민;이재상;우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.269-275
    • /
    • 2004
  • Different biological tissues have different values of electrical resistivity. In EIT (electrical impedance tomography), we try to provide cross-sectional images of a resistivity distribution inside an electrically conducting subject such as the human body mainly for functional imaging. However, it is well known that the image reconstruction problem in EIT is ill-posed and the quality of a reconstructed image highly depends on the measurement error. This requires us to develop a high-performance EIT system. In this paper, we describe the development of a 16-channel digital EIT system including a single constant current source, 16 voltmeters, main controller, and PC. The system was designed and implemented using the FPGA-based digital technology. The current source injects 50KHz sinusoidal current with the THD (total harmonic distortion) of 0.0029% and amplitude stability of 0.022%. The single current source and switching circuit reduce the measurement error associated with imperfect matching of multiple current sources at the expense of a reduced data acquisition time. The digital voltmeter measuring the induced boundary voltage consists of a differential amplifier, ADC, and FPGA (field programmable gate array). The digital phase-sensitive demodulation technique was implemented in the voltmeter to maximize the SNR (signal-to-noise ratio). Experimental results of 16-channel digital voltmeters showed the SNR of 90dB. We used the developed EIT system to reconstruct resistivity images of a saline phantom containing banana objects. Based on the results, we suggest future improvements for a 64-channel muff-frequency EIT system for three-dimensional dynamic imaging of bio-impedance distributions inside the human body.