• Title/Summary/Keyword: 3-dimension image processing

Search Result 71, Processing Time 0.026 seconds

A Study on Medial Surface Extraction from Point Samples on 3D Closed Surfaces in Shell Shapes (셸 형상의 3차원 폐곡면상에서 추출된 점데이터군으로부터 중립곡면 계산에 관한 연구)

  • Woo, Hyuck-Je
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • In this study, new medial surface calculation methods using Voronoi diagrams are investigated for the point samples extracted on closed surface models. The medial surface is defined by the closure of all points having more than one closest point on the shape boundary. It is a one of essential geometric information in 3D and can be used in many areas such as 3D shape analysis, dimension reduction, freeform shape deformation, image processing, computer vision, FEM analysis, etc. In industrial parts, the idealized solid parts and shell shapes including sharp edges and vertices are frequently used. Other medial surface extraction methods using Voronoi diagram have inherent separation and branch problems, so that they are not appropriate to the sharp edged objects and have difficulties to be applied to industrial parts. In addition, the branched surfaces on sharp edges in shell shapes should be eliminated to obtain representative medial shapes. In order to avoid separation and branch problems, the new approach by analyzing the shapes and specially sampling on surfaces has been developed.

Unmanned Aircraft Platform Based Real-time LiDAR Data Processing Architecture for Real-time Detection Information (실시간 탐지정보 제공을 위한 무인기 플랫폼 기반 실시간 LiDAR 데이터 처리구조)

  • Eum, Junho;Berhanu, Eyassu;Oh, Sangyoon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.12
    • /
    • pp.745-750
    • /
    • 2015
  • LiDAR(Light Detection and Ranging) technology provides realistic 3-dimension image information, and it has been widely utilized in various fields. However, the utilization of this technology in the military domain requires prompt responses to dynamically changing tactical environment and is therefore limited since LiDAR technology requires complex processing in order for extensive amounts of LiDAR data to be utilized. In this paper, we introduce an Unmanned Aircraft Platform Based Real-time LiDAR Data Processing Architecture that can provide real-time detection information by parallel processing and off-loading between the UAV processing and high-performance data processing areas. We also conducted experiments to verify the feasibility of our proposed architecture. Processing with ARM cluster similar to the UAV platform processing area results in similar or better performance when compared to the current method. We determined that our proposed architecture can be utilized in the military domain for tactical and combat purposes such as unmanned monitoring system.

Developmental disability Diagnosis Assessment Systems Implementation using Multimedia Authorizing Tool (멀티미디어 저작도구를 이용한 발달장애 진단.평가 시스템 구현연구)

  • Byun, Sang-Hea;Lee, Jae-Hyun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.3 no.1
    • /
    • pp.57-72
    • /
    • 2008
  • Serve and do so that graft together specialists' view application field of computer and developmental disability diagnosis estimation data to construct developmental disability diagnosis estimation system in this Paper and constructed developmental disability diagnosis estimation system. Developmental disability diagnosis estimation must supply information of specification area that specialists are having continuously. Developmental disability diagnosis estimation specialist system need multimedia data processing that is specialized little more for developmental disability classification diagnosis and decision-making and is atomized for this. Characteristic of developmental disability diagnosis estimation system that study in this paper can supply quick feedback about result, and can reduce mistake on recording and calculation as well as can shorten examination's enforcement time, and background of training is efficient system fairly in terms of nonprofessional who is not many can use easily. But, as well as when multimedia information that is essential data of system construction for developmental disability diagnosis estimation is having various kinds attribute and a person must achieve description about all developmental disability diagnosis estimation informations, great amount of work done is accompanied, technology about equal data can become different according to management. Because of these problems, applied search technology of contents base (Content-based) that search connection information by contents of edit target data for developmental disability diagnosis estimation data processing multimedia data processing technical development. In the meantime, typical access way for conversation style data processing to support fast image search, after draw special quality of data by N-dimension vector, store to database regarding this as value of N dimension and used data structure of Tree techniques to use index structure that search relevant data based on this costs. But, these are not coincided correctly in purpose of developmental disability diagnosis estimation because is developed focusing in application field that use data of low dimension such as original space DataBase or geography information system. Therefore, studied save structure and index mechanism of new way that support fast search to search bulky good physician data.

  • PDF

A Study on Noise Removal Using Over-sampled Discrete Wavelet Transforms (과표본화 이산 웨이브렛 변환의 잡음제거에 관한 연구)

  • Jee, Innho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.69-75
    • /
    • 2019
  • The standard application area of over-sampled discrete wavelet transform is noise removal technology for digital images. Comparing dual density discrete wavelet transform with dual tree discrete wavelet transform, we have almost similar characteristics. In this paper, several discrete wavelet transforms are accomplished on digital image existing with noise, noises are removed with threshold processing algorithm on subband, performance evaluation experiments of the reconstructed images are accomplished. If we decide appropriate threshold value, the effect noise removal is possible. In this paper, we can certified that the suggested algorithm of 3-direction separable processing with 2 dimension dual density discrete wavelet transform is superior to several experiment results.

Development of Building 3D Spatial Information Extracting System using HSI Color Model (HSI 컬러모델을 활용한 건물의 3차원 공간정보 추출시스템 개발)

  • Choi, Yun Woong;Yook, Wan Man;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.151-159
    • /
    • 2013
  • The building information should be up-to-date information and propagated rapidly for urban modeling, terrain analysis, life information, navigational system, and location-based services(LBS), hence the most recent and updated data of the building information have been required of researchers. This paper presents the developed system to extract the 3-dimension spatial information from aerial orthoimage and LiDAR data of HSI color model. In particular, this paper presents the image processing algorithm to extract the outline of specific buildings and generate the building polygon from the image using HIS color model, recursive backtracking algorithm and the search maze algorithm. Also, this paper shows the effectivity of the HIS color model in the image segmentation.

2-D Modeling of Electromagnetic Waves for the Probing of Concrete (콘크리트 내부 탐사를 위한 전자기파의 2차원 모델링)

  • 조윤범;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.18-23
    • /
    • 2000
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. Three concrete specimens with a 19.1 mm rebar embedded at 40 mm, 60 mm, and 80 mm depth are modeled in 3-dimension. As results, 2-D image processing scheme of modeling data has been developed and applied to the imaging of steel bars inside concrete.

  • PDF

A FRINGE CHARACTER ANALYSIS OF FRINGE IMAGE (Fringe 영상의 주파수 특성 분석)

  • Seo Young-Ho;Choi Hyun-Jun;Kim Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1053-1059
    • /
    • 2005
  • The computer generated hologram (CGH) designs and produces digital information for generating 3-D (3-Dimension) image using computer and software instead of optically-sensed hologram of light interference, and it can synthesis a virtual object which is physically not in existence. Since digital hologram includes an amount of data as can be seen at the process of digitization, it is necessary that the data representing digital hologram is reduced for storing, transmission, and processing. As the efforts that are to handle hologram with a type of digital information have been increased, various methods to compress digital hologram called by fringe pattern are groped. Suitable proposal is encoding of hologram. In this paper, we analyzed the properties of CGH using tools of frequency transform, assuming that a generated CGH is a 2D image by introducing DWT that is known as the better tool than DCT for frequency transform. The compression and reconstruction result which was extracted from the wavelet-based codecs illustrates that it has better properties for reconstruction at the maximum 2 times higher compression rate than the Previous researches of Yoshikawa[2] and Thomas[3].

A Study on Improvement of Image Processing for Precision Inner Diameter Measurement of Circular Hole (원형구멍 정밀 내경측정을 위한 영상처리 개선에 관한 연구)

  • Park, ChangYong;Kweon, HyunKyu;Li, JingHua;Zhang, Hua Xin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.8-13
    • /
    • 2017
  • In this paper, the measurement of the inner diameter dimension of the circular hole by using a machine vision system was studied. This paper was focused on the theory and key technologies of machine vision inspection technology for the improvement of measurement accuracy and speed of the micro circular holes. A new method was proposed and was verified through the experiments on Gray conversion, binarization, edge extraction and Hough transform in machine vision system processes. Firstly, the Hough transform was proposed in order to improve the speed increase and implementation ease, it demonstrated the superiority of Hough transform and improvement through a comparative experiment. Secondly, we propose a calibration method of the system in order to obtain exactly the inner diameter of the circular hole. Finally, we demonstrate the reliability of the entire system as a MATLAB-based implementation of the GUI program, measuring the inner diameter of the circular hole through the circular holes of different dimensions measuring experiment.

  • PDF

Study on the Accuracy of Vessel Measurement According to Table Object Distance Changes (혈관조영장비의 테이블-피사체간 거리 변화에 따른 혈관측정 정확도 연구)

  • Kim, Seung-Gi
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.435-440
    • /
    • 2019
  • This is to study the accuracy of the actual size according to the TOD(table object distance; TOD) change when measuring blood vessels using angiography equipment, and to help the optimal selection of the device used accordingly. Balls similar to the size of common vessels were calibrated with TOD using 30 mm, 20 mm, 10 mm, 5 mm and acrylic phantoms, catheter calibration from 0 cm to 10 cm, 20 cm and 30 cm, respectively. It was measured whether there was a change in the measured value according to the change. The equipment used was GE Innova 3131 IQ equipment, and the image reconstruction method was GE AW4.7 post processing program. Two radiotechnologists were scanned three times by catheter calibration method and 3DRA(3dimension rotational angiography; 3DRA) volume rendering method. The independent sample T-test showed 0.981 (p> 0.05) to verify the significance between the two observers. As a result, in case of catheter calibration, the error rate at TOD 0 mm and 10 mm is within ± 10%, but when the TOD is changed to 20 mm and 50 mm respectively, the tolerance is ± 10% except for 30 mm ball exceeded. On the other hand, 3DRA was included within the tolerance range of ± 10% overall even when the TOD was changed from 0 mm to 50 mm. In the catheter calibration method, the larger the TOD, the larger the error range, and the 3DRA method was able to measure vascular vessels accurately close to the actual measurement without any consideration of the TOD.

Measurement of rivulet movement and thickness on inclined cable using videogrammetry

  • Jing, Haiquan;Xia, Yong;Xu, Youlin;Li, Yongle
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.485-500
    • /
    • 2016
  • Stay cables in some cable-stayed bridges suffer large amplitude vibrations under the simultaneous occurrence of rain and wind. This phenomenon is called rain-wind-induced vibration (RWIV). The upper rivulet oscillating circumferentially on the inclined cable surface plays an important role in this phenomenon. However, its small size and high sensitivity to wind flow make measuring rivulet size and its movement challenging. Moreover, the distribution of the rivulet along the entire cable has not been measured. This paper applies the videogrammetric technique to measure the movement and geometry dimension of the upper rivulet along the entire cable during RWIV. A cable model is tested in an open-jet wind tunnel with artificial rain. RWIV is successfully reproduced. Only one digital video camera is employed and installed on the cable during the experiment. The camera records video clips of the upper rivulet and cable movements. The video clips are then transferred into a series of images, from which the positions of the cable and the upper rivulet at each time instant are identified by image processing. The thickness of the upper rivulet is also estimated. The oscillation amplitude, equilibrium position, and dominant frequency of the rivulet are presented. The relationship between cable and rivulet variations is also investigated. Results demonstrate that this non-contact, non-intrusive measurement method has good resolution and is cost effective.