• Title/Summary/Keyword: 3-axis camera

Search Result 122, Processing Time 0.022 seconds

Real-Time Physical Activity Recognition Using Tri-axis Accelerometer of Smart Phone (스마트 폰의 3축 가속도 센서를 이용한 실시간 물리적 동작 인식 기법)

  • Yang, Hye Kyung;Yong, H.S.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.506-513
    • /
    • 2014
  • In recent years, research on user's activity recognition using a smart phone has attracted a lot of attentions. A smart phone has various sensors, such as camera, GPS, accelerometer, audio, etc. In addition, smart phones are carried by many people throughout the day. Therefore, we can collect log data from smart phone sensors. The log data can be used to analyze user activities. This paper proposes an approach to inferring a user's physical activities based on the tri-axis accelerometer of smart phone. We propose recognition method for four activity which is physical activity; sitting, standing, walking, running. We have to convert accelerometer raw data so that we can extract features to categorize activities. This paper introduces a recognition method that is able to high detection accuracy for physical activity modes. Using the method, we developed an application system to recognize the user's physical activity mode in real-time. As a result, we obtained accuracy of over 80%.

New Implementation and Test Methodology for Single Lens Stereoscopic 3D Camera System (새로운 단일렌즈 양안식 입체영상 카메라의 구현과 테스트 방법)

  • Park, Sangil;Yoo, Sunggeun;Lee, Youngwha
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.569-577
    • /
    • 2014
  • From the year 2009, 3D Stereoscopic movies and TV have been spotlighted after the huge success of a movie called "AVATAR". Moreover, most of 3D movies & contents are created by mixing real-life shots & virtual animated pictures, such as "Robocop 3", "Transformer 4" as shown in 2014. However, the stereoscopic 3D video film shooting with a traditional stereoscopic rig camera system, takes much more time to set the rig system and adjust the system setting for proper film making which necessarily resulting in bigger cost. In fact, these problems have depreciated the success of Avatar as decreasing demand for 3D stereoscopic video shooting. In this paper, inherent problems of traditional stereoscopic rig camera system are analyzed, and as a solution for the problems, a novel implementations of single-lens optical stereoscopic 3D camera system is suggested. The new system can be implemented to a technology for separating two lights when even those lights passing through in the same optical axis. The system has advantages of adjusting the setting and taking video compared with traditional stereoscopic 3D rig systems. Furthermore, this system can acquire comfortable 3D stereoscopic video because of the good characteristics of geometrical errors. This paper will be discussed the single-lens stereoscopic 3D camera system using rolling shutters, it will be tested geometrical errors of this system. Lastly, other types of single lens stereoscopic 3D camera system are discussed to develop the promising future of this system.

A Pseudo 3-Dimensional Structure of the Liquid-propellant Spray Emerging from Nonimpinging-type Injector (비충돌형 인젝터로부터 발생하는 액체추진제 분무의 준3차원 구조)

  • Jung, Hun;Kim, Jeong-Soo;Park, Jeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.17-24
    • /
    • 2010
  • This study was performed to make a close inquiry into a pseudo 3-dimensional structure of the liquid-propellant spray emerging from nonimpinging-type injector. Spray configuration near the injector exit was captured by a high-speed camera, and then its periodic phenomena (shedding) was observed. Detailed spatial structure of spray was investigated by spray characteristic parameters (velocity, diameter, volume flux, etc.) with the aid of a Dual-mode Phase Doppler Anemometry (DPDA). Experiment was carried out at various locations along the geometric axis of the nozzle orifice and on the plane normal to the spray stream with the injection pressures of 17.2 to 27.6 bar.

A Trial Toward Marine Watch System by Image Processing

  • Shimpo, Masatoshi;Hirasawa, Masato;Ishida, Keiichi;Oshima, Masaki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.41-46
    • /
    • 2006
  • This paper describes a marine watch system on a ship, which is aided by an image processing method. The system detects other ships through a navigational image sequence to prevent oversights, and it measures their bearings to maintain their movements. The proposed method is described, the detection techniques and measurement of bearings techniques are derived, and the results have been reported. The image is divided into small regions on the basis of the brightness value and then labeled. Each region is considered as a template. A template is assumed to be a ship. Then, the template is compared with frames in the original image after a selected time. A moving vector of the regions is calculated using an Excel table. Ships are detected using the characteristics of the moving vector. The video camera captures 30 frames per second. We segmented one frame into approximately 5000 regions; from these, approximately 100 regions are presumed to be ships and considered to be templates. Each template was compared with frames captured at 0.33 s or 0.66 s. In order to improve the accuracy, this interval was changed on the basis of the magnification of the video camera. Ships’ bearings also need to be determined. The proposed method can measure the ships’ bearings on the basis of three parameters: (1) the course of the own ship, (2) arrangement between the camera and hull, and (3) coordinates of the ships detected from the image. The course of the own ship can be obtained by using a gyrocompass. The camera axis is calibrated along a particular direction using a stable position on a bridge. The field of view of the video camera is measured from the size of a known structure on the hull in the image. Thus, ships’ bearings can be calculated using these parameters.

  • PDF

A Study of Baby Sleeping Positions Sensing and Safety Band Using an Accelerometer (가속도 센서를 이용한 아기 수면자세 감지 및 안전 밴드에 관한 연구)

  • Yoon, Ji-Min;Lim, Chae-Young;Kim, Kyung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.11-18
    • /
    • 2010
  • In this paper, it introduced the device that was fabricated for monitoring sleeping positions of infants with 3-axis accelerometer. Sleep monitoring studies has been usually conducted two ways. To monitor sleeping posture by installing a camera and then recording of sleep in the sleeping room continuously is the first one. The other one is monitoring pressure sensor's results data for sleeping. Those two ways' benefits are that are able to get relatively accurate sleeping posture data but, there are many disadvantages like constraints of spaces and places, the installation of sensors or cameras, and high cost. In addition, it has a lot of problems that difficult to solve. For babies, it's not easy to apply, as well as uncomfortable. The proposed method uses a 3-axis accelerometer's X axis, Y axis, Z axis position output values in order to recognize the bad ground sleeping position that use of the buzzer alarm. This method uses a 3-axis acceleration sensor to measure the data and transmit sleeping posture using Bluetooth wireless in real time monitoring. The data is helpful for prevention safety hazard such as choked themselves when they slept back side on.

Improved LiDAR-Camera Calibration Using Marker Detection Based on 3D Plane Extraction

  • Yoo, Joong-Sun;Kim, Do-Hyeong;Kim, Gon-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2530-2544
    • /
    • 2018
  • In this paper, we propose an enhanced LiDAR-camera calibration method that extracts the marker plane from 3D point cloud information. In previous work, we estimated the straight line of each board to obtain the vertex. However, the errors in the point information in relation to the z axis were not considered. These errors are caused by the effects of user selection on the board border. Because of the nature of LiDAR, the point information is separated in the horizontal direction, causing the approximated model of the straight line to be erroneous. In the proposed work, we obtain each vertex by estimating a rectangle from a plane rather than obtaining a point from each straight line in order to obtain a vertex more precisely than the previous study. The advantage of using planes is that it is easier to select the area, and the most point information on the board is available. We demonstrated through experiments that the proposed method could be used to obtain more accurate results compared to the performance of the previous method.

Comparison of cyclic fatigue life of nickel-titanium files: an examination using high-speed camera

  • Ozyurek, Taha;Keskin, Neslihan Busra;Furuncuoglu, Fatma;Inan, Ugur
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.224-231
    • /
    • 2017
  • Objectives: To determine the actual revolutions per minute (rpm) values and compare the cyclic fatigue life of Reciproc (RPC, VDW GmbH), WaveOne (WO, Dentsply Maillefer), and TF Adaptive (TFA, Axis/SybronEndo) nickel-titanium (NiTi) file systems using high-speed camera. Materials and Methods: Twenty RPC R25 (25/0.08), 20 WO Primary (25/0.08), and 20 TFA ML 1 (25/0.08) files were employed in the present study. The cyclic fatigue tests were performed using a dynamic cyclic fatigue testing device, which has an artificial stainless steel canal with a $60^{\circ}$ angle of curvature and a 5-mm radius of curvature. The files were divided into 3 groups (group 1, RPC R25 [RPC]; group 2, WO Primary [WO]; group 3, TF Adaptive ML 1 [TFA]). All the instruments were rotated until fracture during the cyclic fatigue test and slow-motion videos were captured using high-speed camera. The number of cycles to failure (NCF) was calculated. The data were analyzed statistically using one-way analysis of variance (ANOVA, p < 0.05). Results: The slow-motion videos were indicated that rpm values of the RPC, WO, and TFA groups were 180, 210, and 425, respectively. RPC ($3,464.45{\pm}487.58$) and WO ($3,257.63{\pm}556.39$) groups had significantly longer cyclic fatigue life compared with TFA ($1,634.46{\pm}300.03$) group (p < 0.05). There was no significant difference in the mean length of the fractured fragments. Conclusions: Within the limitation of the present study, RPC and WO NiTi files showed significantly longer cyclic fatigue life than TFA NiTi file.

Measurement of the Shape in the Radioactive Area by Ultrasonic Wave Sensor

  • Park, Koon-Nam;Sim, Chuel-Muu;Park, Chang-Oong;Lee, Chang-Hee;Park, Jong-Hark
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.927-934
    • /
    • 2002
  • The HANARO ( High-flux Advanced Neutron Application Reactor) has been operated since 1995. The Cold Neutron (CN) hole was implanted in the reflector tank from the design stage. Before a vacuum chamber and a moderator cell for the cold neutron source are installed into the CN hole, it is necessary to measure exactly the size of the inside diameter and thickness of the CN hole to prevent the interference problem. Due to inaccessibility and high radiation field in the CN hole, a mechanical measurement method is not permitted. The immersed ultrasonic technique is considered as the best way to measure the thickness and the diameter of the CN hole. The 4-Axis manipulator was designed and fabricated for locating the ultrasonic sensors. The transducer of an ultrasonic sensor having 10 MHz frequency leads to high resolution as much as 0.03mm. The inside diameter and thickness of 550 points of the CN hole were measured using 2 channel ultrasonic sensors. The results show that the thickness and inside diameter of the CN hole is in the range of 3.3∼6.7mm and 156∼ 165mm, respectively. This data will be a good reference for the design of the cold neutron source facility.

Passive Ranging Based on Planar Homography in a Monocular Vision System

  • Wu, Xin-mei;Guan, Fang-li;Xu, Ai-jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.155-170
    • /
    • 2020
  • Passive ranging is a critical part of machine vision measurement. Most of passive ranging methods based on machine vision use binocular technology which need strict hardware conditions and lack of universality. To measure the distance of an object placed on horizontal plane, we present a passive ranging method based on monocular vision system by smartphone. Experimental results show that given the same abscissas, the ordinatesis of the image points linearly related to their actual imaging angles. According to this principle, we first establish a depth extraction model by assuming a linear function and substituting the actual imaging angles and ordinates of the special conjugate points into the linear function. The vertical distance of the target object to the optical axis is then calculated according to imaging principle of camera, and the passive ranging can be derived by depth and vertical distance to the optical axis of target object. Experimental results show that ranging by this method has a higher accuracy compare with others based on binocular vision system. The mean relative error of the depth measurement is 0.937% when the distance is within 3 m. When it is 3-10 m, the mean relative error is 1.71%. Compared with other methods based on monocular vision system, the method does not need to calibrate before ranging and avoids the error caused by data fitting.

Design of Measurement Algoritms in the Smart CamRuler (스마트 CamRuler 계측 알고리즘 설계)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.149-156
    • /
    • 2013
  • With a rapid growth of smartphone technologies, various applications are developed and diffused actively nowadays. Especially, interesting applications using camera module in a smartphone are developed continuously, mobile users are able to use various useful mobile services in humdrum life. In this paper, we design and implement measurement algorithms which precisely measure the object taken by the camera module in a smartphone. We use 3-axis gyro accelerometer sensor in a smartphone to get the distance, incline and rotation angle in a real time when we take a picture of shooting object and can obtain precise size of it in the picture image. The measurement algorithms proposed in this paper are analyzed and evaluated by a simulation study.