• Title/Summary/Keyword: 3-axis camera

Search Result 122, Processing Time 0.027 seconds

Stabilization of Target Tracking with 3-axis Motion Compensation for Camera System on Flying Vehicle

  • Sun, Yanjie;Jeon, Dongwoon;Kim, Doo-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.1
    • /
    • pp.43-52
    • /
    • 2014
  • This paper presents a tracking system using images captured from a camera on a moving platform. A camera on an unmanned flying vehicle generally moves and shakes due to external factors such as wind and the ego-motion of the machine itself. This makes it difficult to track a target properly, and sometimes the target cannot be kept in view of the camera. To deal with this problem, we propose a new system for stable tracking of a target under such conditions. The tracking system includes target tracking and 3-axis camera motion compensation. At the same time, we consider the simulation of the motion of flying vehicles for efficient and safe testing. With 3-axis motion compensation, our experimental results show that robustness and stability are improved.

A 3-D Tube Reconstruction based on Axis Alignment of Multiple Laser Scanning (배관측 정렬 방법을 이용한 다중레이저 스캐닝 기반의 3차원 배관복원)

  • Baek, Seung-Hae;Park, Soon-Yong;Kim, Seung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1159-1167
    • /
    • 2011
  • A novel 3D tube scanning technique is proposed. The proposed tube scanning technique is developed for a special tube inspection module which consists of four line-lasers and one camera. Using the scanning module, we can reconstruct the 360 degree shapes of the inner surfaces of a cylindrical tube. From an image frame captured by the camera, we reconstruct a partial tube model based on four laser triangulations. Then by aligning such partial models with respect to a reference tube axis, a complete 3D shape of the tube is reconstructed. The tube axis in each reconstructed frame is aligned with a 3D Euclidean transformation to the reference axis. Several experiments show that the proposed method can align multiple tube axes very accurately and reconstruct 3D shapes of a tube with very low shape distortion.

Design of 3-Axis Focus Mechanism Using Piezoelectric Actuators for a Small Satellite Camera (소형 위성 카메라의 압전작동기 타입 3-축 포커스 메커니즘 설계)

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.9-17
    • /
    • 2018
  • For Earth observation, a small satellite camera has relatively weak structural stability compared to medium-sized satellite, resulting in misalignment of optical components due to severe launching and space environments. These alignment errors can deteriorate the optical performance of satellite cameras. In this study, we proposed a 3-axis focus mechanism to compensate misalignment in a small satellite camera. This mechanism consists of three piezo-electric actuators to perform x-axis and y-axis tilt with de-space compensation. Design requirements for the focus mechanism were derived from the design of the Schmidt-Cassegrain target optical system. To compensate the misalignment of the secondary mirror (M2), the focus mechanism was installed just behind the M2 to control the 3-axis movement of M2. In this case, flexure design with Box-Behnken test plan was used to minimize optical degradation due to wave front error. The wave front error was analyzed using ANSYS. The fabricated focus mechanism demonstrated excellent servo performance in experiments with PID servo control.

A 3-axis Focus Mechanism of Small Satellite Camera Using Friction-Inertia Piezoelectric Actuators

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.2
    • /
    • pp.8-15
    • /
    • 2018
  • For small earth observation satellites, alignment between the optical components is important for precise observation. However, satellite cameras are structurally subject to misalignment in the launch environment where vibration excitations and impacts apply, and in space environments where zero gravity, vacuum, radiant heat and degassing occur. All of these variables can cause misalignment among the optical components. The misalignment among optical components results in degradation of image quality, and a re-alignment process is needed to compensate for the misalignment. This process of re-alignment between optical components is referred to as a refocusing process. In this paper, we proposed a 3 - axis focusing mechanism to perform the refocusing process. This mechanism is attached to the back of the secondary mirror and consists of three piezoelectric inertia-friction actuators to compensate the x-axis, y-axis tilt, and de-space through three-axis motion. The fabricated focus mechanism demonstrated excellent servo performance by experimenting with PD servo control.

Non-contact monitoring of 3-dimensional vibrations of bodies using a neural network

  • Ha, Sung Chul;Cho, Gyeong Rae;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1011-1016
    • /
    • 2015
  • Gas piping systems in power plants and factories are always influenced by the mechanical vibrations of rotational machines such as pumps, blowers, and compressors. Unusual vibrations in a gas piping system influence possible leakages of liquids or gases, which can lead to large explosive accidents. Real-time measurements of unusual vibrations in piping systems in situ prohibit them from being possible leakages owing to the repeated fatigue of vibrations. In this paper, a non-contact 3-dimensional measurement system that can detect the vibrations of a solid body and monitor its vibrational modes is introduced. To detect the displacements of a body, a stereoscopic camera system is used, through which the major vibration types of solid bodies (such as X-axis-major, Y-axis-major, and Z-axis-major vibrations) can be monitored. In order to judge the vibration types, an artificial neural network is used. The measurement system consists of a host computer, stereoscopic camera system (two-camera system, high-speed high-resolution camera), and a measurement target. Through practical application on a flat plate, the measured data from the non-contact measurement system showed good agreement with those from the original vibration mode produced by an accelerator.

Stereo Vision Based 3-D Motion Tracking for Human Animation

  • Han, Seung-Il;Kang, Rae-Won;Lee, Sang-Jun;Ju, Woo-Suk;Lee, Joan-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.716-725
    • /
    • 2007
  • In this paper we describe a motion tracking algorithm for 3D human animation using stereo vision system. This allows us to extract the motion data of the end effectors of human body by following the movement through segmentation process in HIS or RGB color model, and then blob analysis is used to detect robust shape. When two hands or two foots are crossed at any position and become disjointed, an adaptive algorithm is presented to recognize whether it is left or right one. And the real motion is the 3-D coordinate motion. A mono image data is a data of 2D coordinate. This data doesn't acquire distance from a camera. By stereo vision like human vision, we can acquire a data of 3D motion such as left, right motion from bottom and distance of objects from camera. This requests a depth value including x axis and y axis coordinate in mono image for transforming 3D coordinate. This depth value(z axis) is calculated by disparity of stereo vision by using only end-effectors of images. The position of the inner joints is calculated and 3D character can be visualized using inverse kinematics.

  • PDF

Three-Dimensional Measurement of Moving Surface Using Circular Dynamic Stereo

  • Lee, Man-Hyung;Hong, Suh-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.3-101
    • /
    • 2001
  • By setting a refractor with a certain angle against the optical axis of the CCD camera lens, the image of a measuring point recorded on the image plane is displaced by the corresponding amounts related to the distance between the camera and the measuring point. When the refractor that keeps the angle against the optical axis is rotated physically at high speed during the exposure of the camera, the image of a measuring point draws an annular streak. Since the size of the annular streak is inversely proportional to the distance between the camera and the measuring point, the 3D position of the measuring point can be obtained by processing the streak. In this paper, for one of the applications of our system, the measurement of a moving surface is introduced. In order to measure the moving surface, multi laser spots are projected on the surface of object. Each position of ...

  • PDF

Three-axis Spring Element Modeling of Ball Bearing Applied to EO/IR Camera and Structural Response Analysis of EO/IR Camera (EO/IR 카메라에 적용된 볼 베어링의 3축 스프링 요소 모델 및 EO/IR 카메라의 구조 응답해석)

  • Cho, Hee-Keun;Rhee, Ju-Hun;Lee, Jun-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1160-1165
    • /
    • 2011
  • This study is focused on the structural dynamic responses, i.e., vibration analysis results of the high-accuracy observation multi-axial camera, which is installed and operated for the UAV (Unmanned Aerial Vehicle) and helicopter etc. And, the authors newly suggest a modeling technology of the ball bearing applied to the camera by using three-axis spring elements. The vibration analysis results well agreed to the randum vibration test results. Also, the vibration responses characteristics of the multi-axial camera through the time history analysis of the random vibration were analyzed and evaluated. The above results can be applied to the FE-modeling of the ball bearings used for the space cameras.

Implementation of Mobile Robot Platform Based on Attitude Reference System for Pan-tilt Camera Control (팬틸트 카메라 제어를 위한 자세측정 장치 기반 이동로봇플랫폼 구현)

  • Park, Se-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.201-206
    • /
    • 2016
  • Aircraft have a cross axis of the three each other for maintenance of aircraft position. It is called roll axis, pitch axis and yaw axis. Attitude reference system is a sensor for detecting a change of the three axis. In this paper, mobile robot platform install part of Pan-tilt and HMD attitude reference system, because of we use control camera. The acceleration sensor is very weak a lot of noise to vibration, also problem with data from process of mapping to the data problems to arise. However to solve this problem, we removed the average filter and Cosine Interpolation for Pan-tilt. Using capacity evaluation for outdoor environment for we are proposing. Mobile robot has HMD and equipped Pan-tilt. We control mobile robot camera. In this experiment result is little bit delay happening, however Pan-tilt camera is relatively stable control checking. Also, we will checking any terrain and slopes is no problem for mobile robot driving skills.

Multi-camera Calibration Method for Optical Motion Capture System (광학식 모션캡처를 위한 다중 카메라 보정 방법)

  • Shin, Ki-Young;Mun, Joung-H.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.41-49
    • /
    • 2009
  • In this paper, the multi-camera calibration algorithm for optical motion capture system is proposed. This algorithm performs 1st camera calibration using DLT(Direct linear transformation} method and 3-axis calibration frame with 7 optical markers. And 2nd calibration is performed by waving with a wand of known length(so called wand dance} throughout desired calibration volume. In the 1st camera calibration, it is obtained not only camera parameter but also radial lens distortion parameters. These parameters are used initial solution for optimization in the 2nd camera calibration. In the 2nd camera calibration, the optimization is performed. The objective function is to minimize the difference of distance between real markers and reconstructed markers. For verification of the proposed algorithm, re-projection errors are calculated and the distance among markers in the 3-axis frame and in the wand calculated. And then it compares the proposed algorithm with commercial motion capture system. In the 3D reconstruction error of 3-axis frame, average error presents 1.7042mm(commercial system) and 0.8765mm(proposed algorithm). Average error reduces to 51.4 percent in commercial system. In the distance between markers in the wand, the average error shows 1.8897mm in the commercial system and 2.0183mm in the proposed algorithm.