• 제목/요약/키워드: 3-Dimensional Printing

검색결과 290건 처리시간 0.023초

3D 프린팅 기술로 출력된 치과 보철물의 임상적 적합도 평가 (Evaluation of clinical adaptation of dental prostheses printed by 3-dimensional printing technology)

  • 김기백
    • 대한치과기공학회지
    • /
    • 제41권1호
    • /
    • pp.1-7
    • /
    • 2019
  • Purpose: The objectives of this study was to evaluate clinical adaptation of dental prostheses printed by 3 dimensional(3D) printing technology. Methods: Ten study models were prepared. Ten specimens of experimental group were printed by 3D printing(3DP group). As a control group, 10 specimens were fabricated by casting method on the same models. Marginal gaps of all specimens were measured to evaluate clinical adaptation. Marginal adaptations were measured using silicone replica technique and measured at 8 sites per specimen. Wilcoxon's signed-ranks test was used for statistical analysis(${\alpha}=0.05$). Results: Means of marginal adaptations were $95.1{\mu}m$ for 3DP group and $75.9{\mu}m$ for CAST group(p < 0.000). Conclusion : However, the mean of the 3DP group was within the clinical tolerance suggested by the previous researchers. Based on this, dental prosthesis fabricated by 3D printing technology is considered to be clinically acceptable.

치과용 3D 프린팅 시스템에 의해 출력된 보철물의 품질 평가 (An evaluation of quality of dental prostheses printed by dental 3-dimensional printing system)

  • 한만소
    • 대한치과기공학회지
    • /
    • 제38권3호
    • /
    • pp.185-191
    • /
    • 2016
  • Purpose: The purpose of this study were to evaluate the quality of dental prostheses printed by 3-dimensional printing system. Methods: Mater model was prepared and ten study models were fabricated. Ten single crowns were printed by 3D-printing system(Resin group) and another ten single crowns using casting method were manufactured(Metal group). The marginal adaptation of single crowns were measured using by silicone replica technique. Silicone replicas were sectioned four times. The marginal adaptations were evaluated using by digital microscope. Statistical analyses were performed with Mann-Whitney test(${\alpha}=0.05$). Results: $Mean{\pm}standard$ deviations of all marginal adaptations were $92.1(20.0){\mu}m$ for Metal group and $69.7(12.3){\mu}m$ for Resin group. Two groups were no statistically significant differences(p>0.05). Conclusion: Marginal adaptation of single crowns printed by 3D-printing system were ranged within the clinical recommendation.

3DP 공정을 이용한 오피스용 임의형상 제작시스템 에 관한 연구 (SFFS) (A Study of SFFS for Office Type using Three-dimensional Printing Process)

  • 이원희;김동수;이택민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1128-1131
    • /
    • 2004
  • SFF(solid freeform fabrication) is another name of RP(rapid prototyping). The SFFS for office type wishes to develop system that can produce small object such as hand phone, cup, accessory etc. with high speed, and also intend suitable system in office environment by compact design, and buy easily by inexpensive price. As can manufacture high speed in existent SFF process technology, representative process that have competitive power in price is 3DP (three dimensional printing) technology. The 3DP technology is way to have general two dimensional printing technology and prints to three dimension, is technology that make three-dimensional solid freeform that want binder doing jetting selectively on powder through printer head. We designed and manufactured SFFS for office based on 3DP process technology design and manufactured, and composed head system so that use 3 printer heads at the same time to improve the fabrication speed of system. We used printer head of INCJET company and cartridge used HP45 series model who can buy easily in general city. And we directly fabricated three dimensional solid freeform using developed SFFS for office type.

  • PDF

3 차원 프린팅 기술로 제작된 조직공학용 3 차원 구조체 (Three-Dimensional Printed 3D Structure for Tissue Engineering)

  • 박정훈;장진아;조동우
    • 대한기계학회논문집B
    • /
    • 제38권10호
    • /
    • pp.817-829
    • /
    • 2014
  • 조직공학 분야에서의 3 차원 구조체는 세포의 성장과 분화를 유도하기 위한 미세 환경을 제공하고, 재생하고자 하는 조직의 형태를 유지할 수 있도록 지탱해 주는 역할을 수행한다. 현재까지 다양한 생체재료 및 이의 가공 기법들이 이러한 3 차원 구조체를 제작하는데 적용되고 있다. 특히, 3 차원 프린팅 기술은 다양한 재료를 이용하여 원하는 외부 형상과 내부 구조를 제작할 수 있기 때문에 오늘날 조직공학 분야에 많이 이용되고 있고, 이 기술을 통해 새로운 조직공학적 접근 방법도 시도되고 있다. 본 논문에서는, 현재 조직공학 분야에 적용되고 있는 3 차원 프린팅 기술과, 이를 통해 제작된 기능성 인공지지체 및 세포 프린팅 구조체, 그리고 이의 다양한 조직공학적 적용에 대해서 서술하고자 한다.

Selective Encryption Algorithm for 3D Printing Model Based on Clustering and DCT Domain

  • Pham, Giao N.;Kwon, Ki-Ryong;Lee, Eung-Joo;Lee, Suk-Hwan
    • Journal of Computing Science and Engineering
    • /
    • 제11권4호
    • /
    • pp.152-159
    • /
    • 2017
  • Three-dimensional (3D) printing is applied to many areas of life, but 3D printing models are stolen by pirates and distributed without any permission from the original providers. Moreover, some special models and anti-weapon models in 3D printing must be secured from the unauthorized user. Therefore, 3D printing models must be encrypted before being stored and transmitted to ensure access and to prevent illegal copying. This paper presents a selective encryption algorithm for 3D printing models based on clustering and the frequency domain of discrete cosine transform. All facets are extracted from 3D printing model, divided into groups by the clustering algorithm, and all vertices of facets in each group are transformed to the frequency domain of a discrete cosine transform. The proposed algorithm is based on encrypting the selected coefficients in the frequency domain of discrete cosine transform to generate the encrypted 3D printing model. Experimental results verified that the proposed algorithm is very effective for 3D printing models. The entire 3D printing model is altered after the encryption process. The decrypting error is approximated to be zero. The proposed algorithm provides a better method and more security than previous methods.

3D 프린팅 기술 기반 창업 성공 사례 (Successful Examples of 3D Printing Technology-based Start-up Enterprises)

  • 심진형;윤원수;고태조
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.104-110
    • /
    • 2016
  • The process of three-dimensional (3D) printing (also known as "rapid prototyping" and "additive manufacturing") uses computer-created digital models to produce 3D objects with a desired shape by stacking materials through a layer-by-layer process. The industrial potential and feasibility of 3D printing technology were recently highlighted in President Obama's State of the Union address in 2013. Since his speech, worldwide investment in and attention toward 3D printing technology have increased explosively. In addition, a number of 3D printing technology-based start-up companies have been established and evaluated as emerging enterprises making successful business models. In this paper, successful start-up companies (domestic and overseas) based on 3D printing technology will be reviewed.

세라믹 3D 프린팅 소개와 치과분야에서의 활용가능성 (3D printing of Ceramics: Introduction and the Feasibility in Dentistry)

  • 오승한
    • 대한치과의사협회지
    • /
    • 제58권7호
    • /
    • pp.448-459
    • /
    • 2020
  • In addition to extensive research on polymer and metal three-dimensional (3D) printing, ceramic 3D printing has recently been highlighted in various fields. The biggest advantage of 3D printing has the ability to easily create any complex shape. This review introduces the 3D printing technology of ceramics according to the type of material and deals with the latest related research in the industrial field including the biomedical engineering field. Finally, the future of ceramic 3D printing technology available in dentistry will be discussed.

  • PDF

Utility of three-dimensional printing in the surgical management of intra-articular distal humerus fractures: a systematic review and meta-analysis of randomized controlled trials

  • Vishnu Baburaj;Sandeep Patel;Vishal Kumar;Siddhartha Sharma;Mandeep Singh Dhillon
    • Clinics in Shoulder and Elbow
    • /
    • 제27권1호
    • /
    • pp.72-78
    • /
    • 2024
  • Background: Clinical outcomes after fixation of distal humerus intraarticular fractures are directly related to the quality of reduction. The use of three-dimensional (3D)-printed fracture models can benefit preoperative planning to ensure good reduction. This review aims to determine if surgery performed with 3D printing assistance are faster and result in fewer complications and improved clinical outcomes than conventional methods. We also outline the benefits and drawbacks of this novel technique in surgical management of distal humerus fractures. Methods: A systematic literature search was carried out in various electronic databases. Search results were screened based on title and abstract. Data from eligible studies were extracted into spreadsheets. Meta-analysis was performed using appropriate computer software. Results: Three randomized controlled trials with 144 cases were included in the final analysis. The 3D-printed group had significantly shorter mean operating time (mean difference, 16.25 minutes; 95% confidence interval [CI], 12.74-19.76 minutes; P<0.001) and mean intraoperative blood loss (30.40 mL; 95% CI, 10.45-60.36 mL; P=0.005) compared with the conventional group. The 3D-printed group also tended to have fewer complications and a better likelihood of good or excellent outcomes as per the Mayo elbow performance score, but this did not reach statistical significance. Conclusions: Three-dimensional-printing-assisted surgery in distal humerus fractures has several benefits in reduced operating time and lower blood loss, indirectly decreasing other complications such as infection and anemia-related issues. Future good-quality studies are required to conclusively demonstrate the benefits of 3D printing in improving clinical outcomes.

Analysis of Mechanical Characteristics of Polymer Sandwich Panels Containing Injection Molded and 3D Printed Pyramidal Kagome Cores

  • Yang, K.M.;Park, J.H.;Choi, T.G.;Hwang, J.S.;Yang, D.Y.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.275-279
    • /
    • 2016
  • Additive manufacturing or 3D printing is a new manufacturing process and its application is getting growth. However, the product qualities such as mechanical strength, dimensional accuracy, and surface quality are low compared with conventional manufacturing process such as molding and machining. In this study not only mechanical characteristics of polymer sandwich panel having three dimensional core layer but also mechanical characteristics of core layer itself were analyzed. The shape of three dimensional core layer was pyramidal kagome structure. This core layer was fabricated by two different methods, injection molding with PP resin and material jetting type 3D printing with acrylic photo curable resin. The material for face sheets in the polymer sandwich panel was PP. Maximum load, stiffness, and elongation at break were examined for core layers fabricated by two different methods and also assembled polymer sandwich panels. 3D printed core showed brittle behavior, but the brittleness decreased in polymer sandwich panel containing 3D printed core. The availability of 3D printed article for the three dimensional core layer of polymer sandwich panel was verified.