• 제목/요약/키워드: 3-Dimensional Atom Probe Tomography

검색결과 9건 처리시간 0.019초

A Brief Comment on Atom Probe Tomography Applications

  • Seol, Jae-Bok;Kim, Young-Tae;Park, Chan-Gyung
    • Applied Microscopy
    • /
    • 제46권3호
    • /
    • pp.127-133
    • /
    • 2016
  • Atom probe tomography is a time-of-flight mass spectrometry-based microanalysis technique based on the field evaporation of surface atoms of a tip-shaped specimen under an extremely high surface electric field. It enables three-dimensional characterization for deeper understanding of chemical nature in conductive materials at nanometer/atomic level, because of its high depth and spatial resolutions and ppm-level sensitivity. Indeed, the technique has been widely used to investigate the elemental partitioning in the complex microstructures, the segregation of solute atoms to the boundaries, interfaces, and dislocations as well as following of the evolution of precipitation staring from the early stage of cluster formation to the final stage of the equilibrium precipitates. The current review article aims at giving a comment to first atom probe users regarding the limitation of the techniques, providing a brief perspective on how we correctly interprets atom probe data for targeted applications.

Atom Probe Tomography를 이용한 나노 스케일의 조성분석: II. 전자소자 및 나노재료에서의 응용 (Nano Scale Compositional Analysis by Atom Probe Tomography: II. Applications on Electronic Devices and Nano Materials)

  • 정우영;방찬우;장동현;구길호;박찬경
    • Applied Microscopy
    • /
    • 제41권2호
    • /
    • pp.89-98
    • /
    • 2011
  • Atom Probe Tomography는 원자 수준의 분해능으로 원소의 위치 및 조성 정보를 3차원으로 제공해 주는 분석 장비이다. APT의 우수한 성능에도 불구하고 반도체 등, 저전도성 물질 분석에는 그 동안 적용이 어려웠다. 그러나 특정 시료 내 위치의 시편을 가공할 수 있는 FIB 시편 제조법과 laser펄스를 이용한 전계증발법의 개발로 APT의 분석 영역이 반도체에서 절연체까지 크게 확대 되고 있다. 본 논문에서는 최근에 적용되기 시작한 MOS-FET, GaN LED, Si-Nanowire 등 전자소자에서의 APT분석 응용사례에 대하여 살펴보았다.

Direct Observation of Heterogeneous Nucleation in Al-Si-Cu-Mg Alloy Using Transmission Electron Microscopy and Three-dimensional Atom Probe Tomography

  • Hwang, Jun Yeon;Banerjee, Rajarshi;Diercks, David R.;Kaufman, Michael J.
    • Applied Microscopy
    • /
    • 제43권3호
    • /
    • pp.122-126
    • /
    • 2013
  • The heterogeneous nucleation of the ${\Theta}^{\prime}$ phase on nanoscale precipitates has been investigated using a combination of three-dimensional atom probe tomography and high-resolution transmission electron microscopy. Two types of ${\Theta}^{\prime}$ phases were observed, namely small (~2 nm thick) cylindrical precipitates and larger (~100 nm) globular precipitates and both appear to be heterogeneously nucleated on the nanoscale precipitates. The composition and crystal structure of precipitates were directly analyzed by combination of two advanced characterization techniques.

Atom Probe Tomography를 이용한 나노 스케일의 조성분석: I. 이론과 설비 (Nano Scale Compositional Analysis by Atom Probe Tomography: I. Fundamental Principles and Instruments)

  • 정우영;방찬우;구길호;박찬경
    • Applied Microscopy
    • /
    • 제41권2호
    • /
    • pp.81-88
    • /
    • 2011
  • 최근 나노 영역에서의 구조분석과 조성분석의 중요성이 증대되고 있으나, 기존의 분석장비들은 한계에 부딪히고 있다. 최근 개발된 APT는 nm 이하의 공간분해능과 수십 ppm수준의 detection limit으로 원소의 3차원분포와 조성정보를 제공해 주는 분석장비로서, 이러한 기존 분석의 한계를 극복할 수 있는 새로운 분석장비이다. 그러나 국내에는 아직 잘 알려지지 않아 활용이 미비한 실정이다. 따라서, 본 논문에서는 APT에 대한 이해를 돕기 위해 APT분석의 원리와 시편준비에 대해 소개하였다.

A Brief Overview of Atom Probe Tomography Research

  • Gault, Baptiste
    • Applied Microscopy
    • /
    • 제46권3호
    • /
    • pp.117-126
    • /
    • 2016
  • Atom probe tomography (APT) has been fast rising in prominence over the past decade as a key tool for nanoscale analytical characterization of a range of materials systems. APT provides three-dimensional mapping of the atom distribution in a small volume of solid material. The technique has evolved, with the incorporation of laser pulsing capabilities, and, combined with progress in specimen preparation, APT is now able to analyse a very range of materials, beyond metals and alloys that used to be its core applications. The present article aims to provide an overview of the technique, providing a brief historical perspective, discussing recent progress leading to the state-of-the-art, some perspectives on its evolution, with targeted examples of applications.

THREE DIMENSIONAL ATOM PROBE STUDY OF NI-BASE ALLOY/LOW ALLOY STEEL DISSIMILAR METAL WELD INTERFACES

  • Choi, Kyoung-Joon;Shin, Sang-Hun;Kim, Jong-Jin;Jung, Ju-Ang;Kim, Ji-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.673-682
    • /
    • 2012
  • Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multi-component metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

NANO-STRUCTURAL AND NANO-CHEMICAL ANALYSIS OF NI-BASE ALLOY/LOW ALLOY STEEL DISSIMILAR METAL WELD INTERFACES

  • Choi, Kyoung-Joon;Shin, Sang-Hun;Kim, Jong-Jin;Jung, Ju-Ang;Kim, Ji-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제44권5호
    • /
    • pp.491-500
    • /
    • 2012
  • The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

변태 유기 소성강(TRIP steel)의 미세구조와 원자 단위 분석 (Atomic Scale Investigation of TRIP Steels)

  • 임남석;강주석;김성일;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.273-276
    • /
    • 2008
  • In this study, microstructure and distribution of alloy elements were investigated in thermo-mechanically processed C-Mn-Si transformation induced plasticity (TRIP) steels. The microstructures of TRIP steels were investigated by using advanced analysis techniques, such as three dimensional atom probe tomography (3D-APT). At first, the microstructure was observed by using TEM. TEM results revealed that microstructure of C-Mn-Si TRIP steel was composed of ferrite, bainte, and retained austenite. 3D-APT was used to characterize atomic-scale partitioning of added elements at the phase interface. In the retained austenite phase, Ti and B were enriched with C. However, there was no fluctuation of Mn and Si concentration across the interface. Through these analysis techniques, the advanced characteristics of constituent microstructure in C-Mn-Si TRIP steels were identified.

  • PDF

TRIP강에서 Al이 미세구조와 상변태에 미치는 영향 (Effects of Al in TRIP steels on microstructure and phase transformation)

  • 임남석;김성일;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.213-216
    • /
    • 2009
  • In this study, three cold-rolled TRIP steels containing different Al content (0.04wt%, 1.0 wt.% and 2.00wt%) were fabricated to understand the complex effects of Al in TRIP steel. The influences of Al on microstructural evolution of cold-rolled TRIP steels have been analyzed by using advanced analysis techniques, such as transmission electron microscope (TEM) and three dimensional atom probe tomography (3D-APT). TEM results revealed that second phases such as bainte and retained austenite decrease with increase of Al content. In addition, 3D-APT was used to characterize atomic-scale distribution of alloying elements at the constituent phases. Through these analysis techniques, the advanced characteristics of constituent microstructure in TRIP steels were identified depending on Al contents in TRIP steels.

  • PDF