• Title/Summary/Keyword: 3-D position

Search Result 2,275, Processing Time 0.029 seconds

Resonance frequency analysis of 3D printed self-healing capsules for localization of self-healing capsules inside concrete using millimeter wave length electromagnetic waves (밀리미터 전자기파를 이용한 콘크리트 내부 자가치유 캡슐의 위치 측정을 위한 3D 프린팅 자가치유 캡슐의 공진 주파수 분석)

  • Lim, Tae-Uk;Cheng, Hao;Lee, Yeong Jun;Hu, Jie;Kim, Sangyou;Jung, Wonsuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.243-244
    • /
    • 2022
  • In this paper, experiments were conducted on signal amplification of polymer capsules for application to Ground Penetrating Radar so as to enable real-time monitoring of polymer capsules inside concrete using the Morphology Dependent Resonance phenomenon. A TEM CELL and a vector network analyzer were used to analyze the difference in resonance frequency depending on the material of the sphere and the presence or absence of fracture. In order to manufacture a capsule of a size that can be measured using millimeter waves used in GPR, we manufactured a capsule with a 3D printer and analyzed the effects of the presence or absence of coating and the size of the capsule on the resonance frequency. Resonant frequency or signal amplification is more affected by diameter than coating. The capsule showing the highest amplification is the resin-coated 50 mm diameter capsule with a 316-fold increase and the lowest capsule is the uncoated 10 mm diameter capsule with a signal amplification of 11.9 times. These results demonstrate the potential of GPR to measure the position and state of self-healing capsules, which are small-sized polymers, in real time using millimeter waves.

  • PDF

A Study on Assembly Part Recognition Using Part-Based Superquadric Model (부품 기반한 수퍼쿼드릭 모델을 이용한 기계부품 인식에 관한 연구)

  • 이선호;홍현기;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.734-742
    • /
    • 2000
  • This paper presents a new volumetric approach to 3D object recognition by using PBSM (part-based superquadric model). The assembly part object can be constructed with the set of volumetric primitives and the relationships between them. We describe volumetric characteristics of the model object with superquadric parameters. In addition, our model base has the relationships between volumetric primitives as well as the surface information : the surface type, the junction type between neighboring surfaces. These surface properties and relationships between parts are effectively used in recognition process. Our integrated method is robust to recognition of the identity, position, and orientation of randomly oriented assembly parts. Furthermore, we can reduce the effects of self-occlusion and non-linear shape changes according to viewpoint. In this paper, we show that our integrated method is robust to recognition of the identity, position, and orientation of randomly oriented assembly parts through experimental results.

  • PDF

Improve Stability of Military Infrared Image and Implement Zynq SoC (군사용 적외선 영상의 안정화 성능 개선 및 Zynq SoC 구현)

  • Choi, Hyun;Kim, Young-Min;Kang, Seok-Hoon;Cho, Joong-Hwee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Military camera equipment has a problem that observability is inferior due to various shaking factors. In this paper, we propose an image stabilization algorithm considering performance and execution time to solve this problem and implemented it in Zynq SoC. We stabilized both the simple shaking in the fixed observation position and the sudden shaking in the moving observation position. The feature of the input image is extracted by the Sobel edge algorithm, the subblock with the large edge data is selected, and the motion vector, which is the compensation reference, is calculated through template matching using the 3-step search algorithm of the region of interest. In addition, the proposed algorithm can distinguish the shaking caused by the simple shaking and the movement by using the Kalman filter, and the stabilized image can be obtained by minimizing the loss of image information. To demonstrate the effectiveness of the proposed algorithm, experiments on various images were performed. In comparison, PSNR is improved in the range of 2.6725~3.1629 (dB) and image loss is reduced from 41% to 15%. On the other hand, we implemented the hardware-software integrated design using HLS of Xilinx SDSoC tool and confirmed that it operates at 32 fps on the Zynq board, and realized SoC that operates with real-time processing.

Development of Elbow Joint X-ray Examination Aid for Medical Imaging Diagnosis (의료영상 진단을 위한 팔꿉관절 X-선 검사 보조기구 개발)

  • Hyeong-Gyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.127-133
    • /
    • 2024
  • The elbow joint is made up of three different bones. X-rays or other radiological exams are commonly used to diagnose elbow injuries or disorders caused by physical activity and external forces. Previous research on the elbow joint reported a new examination method that meets the imaging evaluation criteria in the tilt position by Z-axis elevation of the forearm. Therefore, this study aims to design an optimized instrument and develop an aid applicable to other upper extremity exams. After completing the 2D drawing and 3D modeling design, the final design divided into four parts was fabricated with a 3D printer using ABS plastic and assembled. The developed examination aid consists of a four-stage Z-axis elevation tilt angle function (0°, 5°, 10°, and 15°) and can rotate and fixate 360° in 1-degree increments. It was designed to withstand a maximum equivalent stress of 56.107 Pa and a displacement of 1.6548e-5 mm through structural analysis to address loading issues caused by cumulative frequency of use and physical utilization. In addition to X-ray exams of the elbow joint, the developed aid can be used for shoulder function tests by rotating the humerus and also be applied to MRI and CT exams as it is made of non-metallic materials. It will contribute to the accuracy and efficiency of medical imaging diagnosis through clinical applications of various devices and medical imaging exams in the future.

The Recent Practice of Evaluation of Government-sponsored Research Institutes(GRIs) in Korea : From Retrospective to Forward-looking perspective (이공계 정부출연(연) 기관평가모형개발 및 적용사례 연구)

  • 이철원;현재호
    • Proceedings of the Technology Innovation Conference
    • /
    • 1998.06a
    • /
    • pp.131-163
    • /
    • 1998
  • The interest in the evaluation of government-sponsored research institutes (GRIs) has increased markedly in Korea in 1990s; this is mainly because of the increasing needs 1) to improve the quality of R&D at GRIs, and 2) to reorient the GRIs' strategic position in Korean national innovation systems due to the enhancement of R&D capabilities of private companies and universities during last decade. As a first attempt to diagnose the managerial and strategic issues of GRIs, a Multi-Ministerial Evaluation Committee was established as an ad hoc task force under the Prime Minister's Office in 1991. According to the recommendations of the committee, the Ministry of Science and Technology (MOST) to which most of GRIs were affiliated, made it a rule to evaluate the annual performance of GRIs since 1992. This paper examines the recent experience of MOST's evaluation of Government-sponsored Research Institute in Korea. After several years'efforts of Science & Technology Policy Institute(STEPI) to build prospective evaluation systenL MOST decided to apply two supplementary approaches for the evaluation of GRIs; one is summative annual evaluation and the other is formative 3-year evaluation. The annual evaluation system that is designed as a temporary measure is to monitor and to guide the self-evaluation activities of GRIs. In the process of annual evaluation, MOST tries to minimize its direct involvement, and allows each GRI to develop self-evaluation system that is most appropriate for the unique characteristics of the institute. If there exist urgent issues under scrutiny, however, it can be incorporated and examined by a group of external experts as special issues in the annual evaluation system. The aim of 3-year evaluation is both to examine the past performance of each GRI and to investigate whether the strategic role of each GRI is viable in the future. Its major focus, however, lies not on auditing past performance but on strengthening future strategic position of each GRI. The MOST designates a group of evaluation experts with appropriate knowledge and competence as members of the General Evaluation Committee for one year. With the help of STEPI, a specialized research institute for R&D evaluation, the General Evaluation Committee develops methodology and procedures for the actual evaluation of GRIs. Based on the evaluation reports and recommendations from the General Evaluation Committee, the MOST develops various policy measures for strengthening GRIs.

  • PDF

Study on the Control and Topographical Recognition of an Underwater Rubble Leveling Robot for Port Construction (항만공사용 사석 고르기 수중로봇의 제어 및 지형인식에 관한 연구)

  • Kim, Tae-Sung;Kim, Chi-Hyo;Lee, Jin-Hyung;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.42 no.3
    • /
    • pp.237-244
    • /
    • 2018
  • When underwater rubble leveling work is carried out by a robot, real-time information on the topography around the robot is required for remote control. If the topographical information with respect to the current position of the robot is displayed as a 3D graphic image, it allows the operator to plan the working schedules and to avoid accidents like rollovers. Up until now, the topographical recognition was conducted by multi-beam sonars, which were only used to assess the quality before and after the work and could not be used to provide real-time information for remote control. This research measures the force delivered to the bucket which presses the mound to determine whether contact is made or not, and the contact position is calculated by reading the cylinder length. A variable bang-bang control algorithm is applied to control the heavy robot arms for the positioning of the bucket. The proposed method allows operators to easily recognize the terrain and intuitively plan the working schedules by showing relatively 3-D gratifications with respect to the robot body. In addition, the operating patterns of a skilled operator are programmed for raking, pushing, moving, and measuring so that they are automatically applied to the underwater rubble leveling work of the robot.

Design and Prototyping of Lifting Devices for Manhole Cover using Structural Analysis and 3D Printing (3D 프린팅과 구조해석을 이용한 맨홀의 부양장치 설계 및 제작)

  • Lee, Hyoungwook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.648-654
    • /
    • 2018
  • In order to maintain manholes installed on the road, the manhole should be easy to open and close. Manhole covers under harsh conditions require that they can be lifted when attempting to open the manhole because the frame and cover are stuck and difficult to open and close. In this study, the design of a lifting mechanism was carried out to improve and integrate the locking type manhole. The mechanism of the locking manhole is that when the bolt located at the center is turned, the hub connected with the bolt descends, and the hook connected to the hub is rotated. The end of the hook is hooked to the manhole frame. The auxiliary device was installed on the hook so that the manhole cover can be lifted. The structure was designed to endure about 300kg of lifting force based on 70% of the yield stress of the hook to perform lifting function. The shape design was performed through the structural analysis using the finite element method. First, the basic design was performed with the simplified 2-dimensional model and the attachment position and shape were designed through the 3-dimensional model. In order to find out the structural problems of the designed shape, the scale downed model was fabricated through 3D printing and confirmed that the lifting function worked. Finally, it was confirmed that both the locking and the average lifting of about 6.1 mm can be done by applying the lifting mechanism through the machining and applying it to the existing locking manhole.

Quality Analysis of Three-Dimensional Geo-spatial Information Using Digital Photogrammetry (수치사진측량 기법을 이용한 3차원 공간정보의 품질 분석)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.141-149
    • /
    • 2010
  • Three-dimensional geo-spatial information is important for the efficient use and management of the country and the three-dimensional expression and analysis of urban projects, such as urban plans devised by local governments and urban management. Thanks to the revitalization of the geo-spatial information service industry, it is now being variously used not only in public but also private areas. For the creation of high-guiltily three-dimensional geo-spatial information, emphasis should be placed on not only the quality of the source image and three-dimensional geo-spatial model but also the level of visualization, such as level of detail and texturing. However, in the case of existing three-dimensional geo-spatial information, its establishment process is complicated and its data are not updated frequently enough, as it uses ready-created digital maps. In addition, as it uses Ortho Images, the images exist Relief displacement. As a result, the visibility is low and the three-dimensional models of artificial features are simplified to reach LoD between 2 and 3, making the images look less realistic. Therefore, this paper, analyzed the quality of three-dimensional geo-spatial information created using the three-dimensional modeling technique were applied using Digital photogrammetry technique, using digital aerial photo images by an existing large-format digital camera and multi-looking camera. The analysis of the accuracy of visualization information of three-dimensional models showed that the source image alone, without other visualization information, secured the accuracy of 84% or more and that the establishment of three-dimensional spatial information carried out simultaneously with filming made it easier to gain the latest data. The analysis of the location accuracy of true Ortho images used in the work process showed that the location accuracy was better than the allowable horizontal position accuracy of 1:1,000 digital maps.

Enhancing Effect of the Combined Preparation Containing Antacid and Aceglutamide Aluminium on Defensive Factors in Chronic Ulcer Model of the Rat (흰쥐의 만성궤양모델에서 Aceglutamide aluminium를 함유한 복합제산제의 점막방어인자 증강작용)

  • Jang, Byeong-Su;Yoo, Eun-Ju;Park, Joon-Woo;Yu, Young-Hyo;Park, Myung-Hwan
    • YAKHAK HOEJI
    • /
    • v.38 no.6
    • /
    • pp.800-805
    • /
    • 1994
  • Antacid(AM, 600 mg/kg=aluminium hydroxide, magnesium hydroxide, and simethicone with a ratio of 1 : 1 : 0.1) and aceglutamide aluminium(AGA, 263 mg/kg)-Effect of the combined preparation containing on the gastric mucosal hexosamine, sialic acid, and aluminium contents adhered to the gastric wall of the rat was investigated. Severe ulcers were produced in rats by injecting of $30\;{\mu}l$ acetic acid(30%) into the subserosal layer of one position in the corpus. When given orally for 15 consecutive days, AM(1,200 mg/kg), AGA(525, 1,050 mg/kg), and the combined preparation significantly decreased the ulcer area. AGA(525, 1,050 mg/kg) and the combined preparation also increased the amount of hexosamine and sialic acid in the intact and ulcerated areas. On the other hand, the contents of hexosamine and sialic acid were not affected by AM (600, 1,200 mg/kg). The amount of aluminium adhered to the gastric wall of the rat was higher in the combined preparation when compared to the AM(600 mg/kg) and AGA(263 mg/kg). The aluminium contents adhered may play an important role protecting mucosa from aggresive action of gastric juice and potenting defensive factors through the increase of mucosa-forming components by AGA.

  • PDF

Alignment System Development for producing OLED using Fourth-Generation Substrate

  • Park, Jae-Yong;Han, Seok-Yoon;Lee, Nam-Hoon;Choi, Jeong-Og;Shin, Ho-Seon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.873-878
    • /
    • 2008
  • Doosan Mecatec has developed alignment system for Organic Light-Emitting Diode (OLED) display production using large size substrate. In the present article, The alignment system between the substrate and the mask, which is a core technology for producing the OLED product using the fourth-generation substrate with $730{\times}920mm^2$ or more, will be described by dividing into a substrate loader, a magnet unit, a CCD camera, etc. The substrate loader is optimized through the simulation where the central portion of the substrate droops by about 1.5mm by clamping each of a long side (920mm direction) and a short side (730mm direction) thereof by 6 point and 4 point. A magnet unit using a sheet type of rubber magnet is constituted and a CCD camera model with the specifications capable of minimizing the errors between a clear image and the same image is selected. The system to which an upward evaporation technique of small molecular organic materials will be applied has been developed so that repeatability and position accuracy becomes ${\pm}1{\mu}m$ or less using an UVW type of stage. Also, the vision accuracy of the CCD camera becomes ${\pm}1{\mu}m$ or less and the align process TACT becomes 30sec. or less so that the final alignment accuracy between the substrate and the mask becomes ${\pm}3{\mu}m$ or less. In order to meet an extra-large glass substrate, an evaporation system using an extra-large AMOLED substrate has been developing through a vertical type of an alignment system.

  • PDF