• Title/Summary/Keyword: 3-D integration analysis

Search Result 246, Processing Time 0.028 seconds

Accuracy Analysis of GLONASS Orbit Determination Strategies for GLONASS Positioning (GLONASS 측위를 위한 위성좌표 산출 정확도 향상 방안)

  • Lee, Ho-Seok;Park, Kwan-Dong;Kim, Hye-In
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.573-578
    • /
    • 2010
  • Precise determination of satellite positions is necessary to improve positioning accuracy in GNSS. In this study, GLONASS orbits were predicted from broadcast ephemeris using the 4th-order Runge-Kutta numerical integration method and their accuracy dependence on the integration step and the integration time was analyzed. The 3D RMS (Root Mean Square) differences between the results from I-second integration step and 300-second integration step was about 3 cm, but the processing time was one hundred times less for the I-second integration time case. For trials of different integration times, the 3D RMS errors were 8.3 m, 187.3 m, and 661.5 m for 30-, 150-, and 300-minutes of integration time, respectively. Though this integration-time analysis, we concluded that the accuracy gets higher with a shorter integration time. Thus we suggest forward and backward integration methods to improve GLONASS positioning accuracy, and with this method we can achieve a 5-meter level of 3-D orbit accuracy.

A Methodology for View Integration Using ERD Thesaurus (ERD시소러스를 이용한 뷰 통합 방법론)

  • Lee, Won-Jo;Koh, Jae-Jin;Jang, Gil-Sang
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.553-562
    • /
    • 2004
  • This paper constructs ERD thesaurus that is storing information about Entity Relationship Diagram(ERD), and proposes an ERD thesaurus-based methodology for view integration in an important conceptual design step in designing databases. To show the usefulness of proposed methodology, the prototype for view integration support system is implemented for the applied case. As a result, ERD thesaurus-based methodology is more effective than the existing methodologies for view Integration in the aspects of affinity analysis, semantic conflicts resolution, and view Integration processes. Therefore, our methodology is expected to be utilized in integrating the existing fragmented schema or designing a large database integration.

A Study on the Simulation of Welding Deformation for accurate Assembling (고정밀도 조립을 위한 용접 변형의 해석에 관한 연구)

  • Sung, Ki-Chan;Jang, Kyung-Bok;Jung, Jin-Woo;Kang, Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.129-134
    • /
    • 2001
  • It is essential to predict the welding deformation at assembly stage, to increase productivity through mechanization and automation effectively. A practical analysis method appled for production engineering was proposed to simulate the deformation of arc welding, with an analytical model using finite element method solving thermal-elastic-plastic behavior. In this research, for accurate assembling, 3-D thermal-elastic-plastic finite element model is used to simulate the out-of-plane deformation caused by arc welding. Efforts have been made to find out the efficient method to improve the reliability and accuracy of the numerical calculation. Each of theories of small and large deformation is applied in solving 3-D thermal-elastic-plastic problem to compare with their efficiency about calculation imes and solution accuracy. When solid elements are used in a bending problem of a plate, phenomenon that the predictive deformation is more than that of actual survey is observed. To prevent this phenomenon, reduced integration method for element is employed instead of full integration that is generally used in 3-D thermal-elastic-plastic analysis.

  • PDF

Design Challenges and Solutions for Ultra-High-Density Monolithic 3D ICs

  • Panth, Shreepad;Samal, Sandeep;Yu, Yun Seop;Lim, Sung Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.186-192
    • /
    • 2014
  • Monolithic three-dimensional integrated chips (3D ICs) are an emerging technology that offers an integration density that is some orders of magnitude higher than the conventional through-silicon-via (TSV)-based 3D ICs. This is due to a sequential integration process that enables extremely small monolithic inter-tier vias (MIVs). For a monolithic 3D memory, we first explore the static random-access memory (SRAM) design. Next, for digital logic, we explore several design styles. The first is transistor-level, which is a design style unique to monolithic 3D ICs that are enabled by the ultra-high-density of MIVs. We also explore gate-level and block-level design styles, which are available for TSV-based 3D ICs. For each of these design styles, we present techniques to obtain the graphic database system (GDS) layouts, and perform a signoff-quality performance and power analysis. We also discuss various challenges facing monolithic 3D ICs, such as achieving 50% footprint reduction over two-dimensional (2D) ICs, routing congestion, power delivery network design, and thermal issues. Finally, we present design techniques to overcome these challenges.

Development of a System for Visualization of the Plant 3D Design Data Based on ISO 15926 (ISO 15926 기반 플랜트 3D 설계 데이터 가시화를 위한 시스템 개발)

  • Jeon, Youngjun;Kim, Byung Chul;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.145-158
    • /
    • 2015
  • ISO 15926 is an international standard for the sharing and integration of plant lifecycle information. Plant design data consist of logical configuration, equipment specifications, 2D piping and instrument diagrams (P&IDs), and 3D plant models (shape data). Although 3D computer-aided design (CAD) data is very important data across the plant lifecycle, few studies on the exchange of 3D CAD data using ISO 15926 have been conducted so far. For this, we analyze information requirements regarding plant 3D design in the process industry. Based on the analysis, ISO 15926 templates are defined for the representation of constructive solid geometry (CSG) - based 3D design data. Since system environments for 3D CAD modeling and Semantic Web technologies are different from each other, we present system architecture for processing and visualizing plant 3D design data in the Web Ontology Language (OWL) format. Through the visualization test of ISO 15926-based 3D design data for equipment with a prototype system, feasibility of the proposed method is verified.

Design Optimization of an Automotive Injection Molded Part for Minimizing Injection Pressure and Preventing Weldlines (사출압력 최소화와 웰드라인 방지를 위한 자동차용 사출성형 부품의 최적설계)

  • Park, Chang-Hyun;Pyo, Byung-Gi;Choi, Dong-Hoon;Koo, Man-Seo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.66-72
    • /
    • 2011
  • Injection pressure is an important factor in filling procedure for injection molded parts. In addition, weldlines should be avoided to successfully produce injection molded parts. In this study, we optimally obtained injection molding process parameters that minimize injection pressure. Then, we determined the thickness of the part to avoid weldlines. To solve the optimization problem proposed, we employed MAPS-3D (Mold Analysis and Plastics Solution-3 Dimension), a commercial CAE tool for injection molding analysis, and PIAnO (Process Integration, Automation, and Optimization) as a commercial PIDO (Process Integration and Design Optimization) tool. We integrated MAPS-3D into PIAnO, automated the analysis and design procedure, and performed optimization by employing PQRSM (Progressive Quadratic Response Surface Method) equipped in PIAnO. We successfully obtained optimization results, which demonstrates the effectiveness of our design method.

The design of 4S-Van for implementation of ground-laser mapping system (지상 레이져 매핑시스템 구현을 위한 4S-Van 시스템 설계)

  • 김성백;이승용;김민수
    • Spatial Information Research
    • /
    • v.10 no.3
    • /
    • pp.407-419
    • /
    • 2002
  • In this study, the design of 4S-Van system is discussed fur the implementation of laser mapping system. Laser device is fast and accurate sensor that acquires 3D road and surface data. The orientation laser sensor is determined by loosely coupled (D)GPS/INS Integration. Considering current system architecture, (D)GPS/INS integration is performed far performance analysis of direct georeferencing and self-calibration is performed for interior and exterior orientation and displacement. We utilized 3 laser sensors for compensation and performance improvement. 3D surface data from laser scanner and texture image from CCD camera can be used to implement 3D visualization.

  • PDF

Design of an Integrated Inductor with Magnetic Core for Micro-Converter DC-DC Application

  • Dhahri, Yassin;Ghedira, Sami;Besbes, Kamel
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.369-374
    • /
    • 2016
  • This paper presents a design procedure of an integrated inductor with a magnetic core for power converters. This procedure considerably reduces design time and effort. The proposed design procedure is verified by the development of an inductor model dedicated to the monolithic integration of DC-DC converters for portable applications. The numerical simulation based on the FEM (finite elements method) shows that 3D modeling of the integrated inductor allows better estimation of the electrical parameters of the desired inductor. The optimization of the electrical parameter values is based on the numerical analysis of the influence of the geometric parameters on the electrical characteristics of the inductor. Using the VHDL-AMS language, implementation of the integrated inductor in a micro Buck converter demonstrate that simulation results present a very promising approach for the monolithic integration of DC-DC converters.

Analysis of Semi-Rigid Connections on 3D Floating Structures (3차원 플로팅 구조물의 반강접 접합부 해석)

  • Park, Jong-Seo;Song, Hwa-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.175-180
    • /
    • 2012
  • The shape of floating superstructure is the same as other buildings, but the foundation is based not on land but on a floating body. Unlike inland structures, they are largely influenced by the wave load. Deformation of the floating pontoon due to the wave loads affects the connection, which in turn causes problems related to the habitability and safety to the superstructure users. Accordingly, this study conducted elastic analysis regarding rigid connection and semi-rigid connection by the integration analysis that combined together the superstructure and pontoon of the 3-D floating structure. Moreover, this study investigated the results of the separation analysis excluding pontoon and the integration analysis. In addition, elasticity analysis was used to divide up the wave loads cases, and to classify the moment and displacement of the structure depending on connection following the changes in the wave loads.