• 제목/요약/키워드: 3-(4,5-dimethylthiazol-2-yl)-2

검색결과 497건 처리시간 0.029초

Anti-osteoarthritis effects of Pomegranate, Eucommiae cortex and Achyranthis radix extracts on the primary cultured rat articular chondrocytes

  • Choi, Beom-Rak;Ku, Sae-Kwang;Kang, Su-Jin;Park, Hye-Rim;Sung, Mi-Sun;Lee, Young-Joon;Park, Ki-Moon
    • 대한예방한의학회지
    • /
    • 제21권3호
    • /
    • pp.87-98
    • /
    • 2017
  • Objectives : The objective of present study is to evaluate anti-arthritic effects of dried pomegranate concentrate powders (PCP), Eucommiae Cortex aqueous (EC) and ethanolic (ECe) extracts, Achyranthis Radix aqueous (AR) and ethanolic (ARe) extracts on the primary cultured rat articular chondrocytes. Methods : MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium Bromide) assay was performed cytotoxic effect of test substances. In addition, anti-inflammatory effects were also observed on the lipopolysaccaride (LPS) treated chondrocytes through prostaglandin $E_2\;(PGE_2)$ production and 5-lipoxygenase (LPO) activities, and inhibitory effects on metalloproteinase (MMP)-2 and MMP-9 activities were observed on the recombinant human interleukin $(rhIL)-1{\alpha}$ treated chondrocytes with their extracellular matrix (ECM) related mRNA expressions - collagen type II, SOX9 and aggrecan. Results : As results, ECe and ARe showed obvious cytotoxicity against primary cultured rat articular chondrocytes at a dose level of 10 mg/ml, respectively. However, no obvious cytotoxic effects of PCP, EC and AR were demonstrated at a dose level of 10 mg/ml, on the primary cultured rat articular chondrocytes. In addition, treatment of LPS $50{\mu}g/ml$ induced significant increases of $PGE_2$ contents and 5-LPO activities indicating inflammatory responses of the primary cultured rat articular chondrocytes, and also decreases of cell viabilities, increases of MMP-2 and MMP-9 activities with decreases of extracellular matrix (ECM) related collagen type II, SOX9 and aggrecan mRNA expressions were observed by treatment of $rhIL-1{\alpha}$ 50 ng/ml, suggesting damages on the primary cultured rat articular chondrocytes and related ECM degradations. However, these inflammatory responses and related ECM degradations were inhibited by pretreatment of all test substances, in order of PCP > ECe > ARe > EC > AR, and $rhIL-1{\alpha}$ induced chondrocytes deaths are inhibited by treatment in order of PCP > EC > AR > ECe > ARe. Conclusions : Taken together, it is expected that mixed formulation of PCP as main components with appropriate proportion of EC and AR as additional components will be achieved a potent alternative medicinal food for osteoarthritis.

Anti-tumor Effects of Penfluridol through Dysregulation of Cholesterol Homeostasis

  • Wu, Lu;Liu, Yan-Yang;Li, Zhi-Xi;Zhao, Qian;Wang, Xia;Yu, Yang;Wang, Yu-Yi;Wang, Yi-Qin;Luo, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.489-494
    • /
    • 2014
  • Background: Psychiatric patients appear to be at lower risk of cancer. Some antipsychotic drugs might have inhibitory effects on tumor growth, including penfluridol, a strong agent. To test this, we conducted a study to determine whether penfluridol exerts cytotoxic effects on tumor cells and, if so, to explore its anti-tumor mechanisms. Methods: Growth inhibition of mouse cancer cell lines by penfluridol was determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cytotoxic activity was determined by clonogenic cell survival and trypan blue assays. Animal tumor models of these cancer cells were established and to evaluate penfluridol for its anti-tumor efficacy in vivo. Unesterified cholesterol in cancer cells was examined by filipin staining. Serum total cholesterol and tumor total cholesterol were detected using the cholesterol oxidase/p-aminophenazone (CHOD-PAP) method. Results: Penfluridol inhibited the proliferation of B16 melanoma (B16/F10), LL/2 lung carcinoma (LL/2), CT26 colon carcinoma (CT26) and 4T1 breast cancer (4T1) cells in vitro. In vivo penfluridol was particularly effective at inhibiting LL/2 lung tumor growth, and obviously prolonged the survival time of mice bearing LL/2 lung tumors implanted subcutaneously. Accumulated unesterified cholesterol was found in all of the cancer cells treated with penfluridol, and this effect was most evident in LL/2, 4T1 and CT26 cells. No significant difference in serum cholesterol levels was found between the normal saline-treated mice and the penfluridol-treated mice. However, a dose-dependent decrease of total cholesterol in tumor tissues was observed in penfluridol-treated mice, which was most evident in B16/F10-, LL/2-, and 4T1-tumor-bearing mice. Conclusion: Our results suggested that penfluridol is not only cytotoxic to cancer cells in vitro but can also inhibit tumor growth in vivo. Dysregulation of cholesterol homeostasis by penfluridol may be involved in its anti-tumor mechanisms.

시판 메밀차 열수 추출물의 항산화 및 신경세포 보호효과 (Neuronal Cell Protection and Antioxidant Activities of Hot Water Extract from Commercial Buckwheat Tea)

  • 정창호;정희록;최성길;심기환;허호진
    • 한국식품저장유통학회지
    • /
    • 제18권3호
    • /
    • pp.358-365
    • /
    • 2011
  • 본 연구에서는 시판 메밀차 열수 추출물의 항산화 효과 및 신경세포 보호효과를 조사하였다. 시판 메밀차 열수 추출물의 ABTS 라디칼 소거 활성, FRAP 및 MDA 생성 저해 실험결과 농도 의존적인 경향이 나타났으며 또한 높은 항산화 활성을 보여주었다. 과산화수소로 유발된 산화적 손상에 의한 ROS 축적량을 조사한 결과 $H_2O_2$ 단독 처리구보다 메밀차 열수 추출물 처리구에서 낮은 ROS 축적량을 나타내었다. MTT 및 LDH 분석을 통한 PC12 세포 중의 신경세포 보호효과를 측정한 결과 MTT 분석에서는 시판 메밀차 열수 추출물의 모든 농도에서 높은 세포 생존율을 나타냈고, LDH 분석에서는 추출물에 의한 농도 의존적인 세포질 효소 (LDH) 방출량 감소가 관찰되었다. 총 페놀성 화합물, rutin 및 quercitrin의 함량은 각각 9,608.10 mg/g, 13.42 및 0.90 mg/100 g이었다. 본 연구결과를 종합해 볼 때 rutin 및 quercitrin과 같은 다양한 페놀성 화합물을 함유한 시판 메밀차 추출물은 항산화 활성과 산화적 스트레스로 유발된 신경세포 보호효과를 나타내어 퇴행성 신경질환 등을 예방 할 수 있는 기능성 식품 소재로서의 활용 가치가 높을 것으로 판단된다.

Panax ginseng total protein promotes proliferation and secretion of collagen in NIH/3T3 cells by activating extracellular signal-related kinase pathway

  • Chen, Xuenan;Wang, Manying;Xu, Xiaohao;Liu, Jianzeng;Mei, Bing;Fu, Pingping;Zhao, Daqing;Sun, Liwei
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.411-418
    • /
    • 2017
  • Background: Recently, protein from ginseng was studied and used for the treatment of several kinds of diseases. However, the effect of ginseng total protein (GTP) on proliferation and wound healing in fibroblast cells remains unclear. Methods: In this study, cell viability was analyzed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Cell cycle distribution was analyzed by flow cytometer. The levels of transforming growth factor ${\beta}1$, vascular endothelial growth factor, and collagens were analyzed by enzyme-linked immunosorbent assay and immunofluorescence staining. The expressions of cyclin A, phosphorylation of extracellular signal-related kinase (p-ERK1/2), and ERK1/2 were analyzed by Western blotting. Results: Our results showed that GTP promoted cell proliferation and increased the percentage of cells in S phase through the upregulation of cyclin A in NIH/3T3 cells. We also found that GTP induced the secretion of type I collagen, and promoted the expression of other factors that regulate the synthesis of collagen such as transforming growth factor ${\beta}1$ and vascular endothelial growth factor. In addition, the phosphorylation of ERK1/2 at Thr202/Tyr204 was also increased by GTP. Conclusion: Our studies suggest that GTP promoted proliferation and secretion of collagen in NIH/3T3 cells by activating the ERK signal pathway, which shed light on a potential function of GTP in promoting wound healing.

대황의 모상근 배양조직 추출물의 세포독성 (Cytotoxic Effects of Extracts from Hairy Roots of Rheum undulatum L.)

  • 황성진;김재헌;나명석;황백
    • 한국약용작물학회지
    • /
    • 제9권1호
    • /
    • pp.8-14
    • /
    • 2001
  • 기내 배양 과정에서 식물성장조절물질의 처리 없이도 성장속도가 매우 빠르고, 모식물체와 동일한 성분의 대사물질을 생합성하는 화학적 전형성능을 나타내는 형질전환된 뿌리 즉, 모상근을 이용하여 약리물질을 생산하고자 대황 모상근을 유도하고 이로부터 추출한 물질의 세포독성을 조사하였다. 1. 수층과 클로로포름 층으로부터 얻은 대황 모상근 추출물 모두 농도의 증가에 따라 세포에 미치는 독성이 증가하였다. 2. 클로로포름층으로부터 얻은 대황 모상근 추출물이 수층으로부터 얻은 대황 추출물보다 세포에 미치는 독성이 크게 나타났다. 클로로포름층 분획의 $MTT_{50},\;NR_{50}\;SRB_{50}$은 각각 $289.3{\mu}g/ml,\;302.7{\mu}g/ml,\;433.8{\mu}g/ml$이었고, 수층 분획물의 $MTT_{50},\;NR_{50}\;SRB_{50}$은 각각 $475.8{\mu}g/ml,\;428.3{\mu}g/ml,\; 549.5{\mu}g/ml$ 이었다. 3. 세포독성 측정방법에 따라 차이를 보였으며 수층 분획의 경우 NR정량법에서 클로로포름층 분획의 경우 MTT정량법에서 독성 정도가 더 높게 나타났다.

  • PDF

해암단이 수종의 암세포에 미치는 항암 효과 (Anti-tumor Activities of Haeamdan on Various Cancer Cells)

  • 이지영;오혜경;류한성;김남재;정원용;오현아;최혁재;윤성우;류봉하
    • 대한암한의학회지
    • /
    • 제20권2호
    • /
    • pp.5-11
    • /
    • 2015
  • Objective : The objective of this study was to investigate the anti-tumor activity of the complexed herbal formula, Haeamdan (HAD). Methods : Seven Cancer cell lines, LoVo, MCF-7, AGS, Sarcoma 180, HL-60, NCI-H69, LL/2, were prepared and the cytotoxicity was assessed by 3-(4,5-dimethylthiazol-2yl)-2,5-dephenyl tetrazolium bromide (MTT) assay. HAD was applied with various concentrations from 0.1 to 1.0 mg/ml to figure out the appropriate dosage. ICR male mice were intraperitoneally implanted with Sarcoma 180 and divided into 8 species for each group. Control group was treated with normal saline, positive control group was treated with cyclophosphamide 8mg/kg, and experimental group was treated with HAD 1g/kg. Results : Among seven cancer cell lines, HAD exhibited strong cytotoxic activities to followed four cancer cell lines, that is, Sarcoma 180, HL-60, NCI-H69, and LL/2. These cytotoxic activity was expressed under 0.50 mg/ml of IC50 under 0.1~1mg/ml of OBW. When Sarcoma 180 cancer cell was implanted in ICR male mice and treated with the HAD, HAD prolonged the median overall survival for 3.6 days, from 17.5 to 21.1 days. Conclusion : HAD showed strong cytotoxicity to the cancer cells, Sarcoma 180, HL-60, NCI-H69, on in vitro study and it showed anti-tumor activity in vivo with the peritoneal cancer mice by prolonging the median survival for 3.6 days. Further researches would be expected to support the anti-tumor efficacy of HAD.

The role of ginsenoside Rb1, a potential natural glutathione reductase agonist, in preventing oxidative stress-induced apoptosis of H9C2 cells

  • Fan, Hui-Jie;Tan, Zhang-Bin;Wu, Yu-Ting;Feng, Xiao-Reng;Bi, Yi-Ming;Xie, Ling-Peng;Zhang, Wen-Tong;Ming, Zhi;Liu, Bin;Zhou, Ying-Chun
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.258-266
    • /
    • 2020
  • Background: Oxidative stress-induced cardiomyocytes apoptosis is a key pathological process in ischemic heart disease. Glutathione reductase (GR) reduces glutathione disulfide to glutathione (GSH) to alleviate oxidative stress. Ginsenoside Rb1 (GRb1) prevents the apoptosis of cardiomyocytes; however, the role of GR in this process is unclear. Therefore, the effects of GRb1 on GR were investigated in this study. Methods: The antiapoptotic effects of GRb1 were evaluated in H9C2 cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, annexin V/propidium iodide staining, and Western blotting. The antioxidative effects were measured by a reactive oxygen species assay, and GSH levels and GR activity were examined in the presence and absence of the GR inhibitor 1,3-bis-(2-chloroethyl)-1-nitrosourea. Molecular docking and molecular dynamics simulations were used to investigate the binding of GRb1 to GR. The direct influence of GRb1 on GR was confirmed by recombinant human GR protein. Results: GRb1 pretreatment caused dose-dependent inhibition of tert-butyl hydroperoxide-induced cell apoptosis, at a level comparable to that of the positive control N-acetyl-L-cysteine. The binding energy between GRb1 and GR was positive (-6.426 kcal/mol), and the binding was stable. GRb1 significantl reduced reactive oxygen species production and increased GSH level and GR activity without altering GR protein expression in H9C2 cells. Moreover, GRb1 enhanced the recombinant human GR protein activity in vitro, with a half-maximal effective concentration of ≈2.317 μM. Conversely, 1,3-bis-(2-chloroethyl)-1-nitrosourea co-treatment significantly abolished the GRb1's apoptotic and antioxidative effects of GRb1 in H9C2 cells. Conclusion: GRb1 is a potential natural GR agonist that protects against oxidative stress-induced apoptosis of H9C2 cells.

Role of stearyl-coenzyme A desaturase 1 in mediating the effects of palmitic acid on endoplasmic reticulum stress, inflammation, and apoptosis in goose primary hepatocytes

  • Tang, Bincheng;Qiu, Jiamin;Hu, Shenqiang;Li, Liang;Wang, Jiwen
    • Animal Bioscience
    • /
    • 제34권7호
    • /
    • pp.1210-1220
    • /
    • 2021
  • Objective: Unlike mammals, goose fatty liver shows a strong tolerance to fatty acids without obvious injury. Stearyl-coenzyme A desaturase 1 (SCD1) serves crucial role in desaturation of saturated fatty acids (SAFs), but its role in the SAFs tolerance of goose hepatocytes has not been reported. This study was conducted to explore the role of SCD1 in regulating palmitic acid (PA) tolerance of goose primary hepatocytes. Methods: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide was examined to reflect the effect of PA on hepatocytes viability, and quantitative polymerase chain reaction was used to detect the mRNA levels of several genes related to endoplasmic reticulum (ER) stress, inflammation, and apoptosis, and the role of SCD1 in PA tolerance of goose hepatocytes was explored using RNA interfere. Results: Our results indicated that goose hepatocytes exhibited a higher tolerant capacity to PA than human hepatic cell line (LO2 cells). In goose primary hepatocytes, the mRNA levels of fatty acid desaturation-related genes (SCD1 and fatty acid desaturase 2) and fatty acid elongate enzyme-related gene (elongase of very long chain fatty acids 6) were significantly upregulated with 0.6 mM PA treatment. However, in LO2 cells, expression of ER stress-related genes (x box-binding protein, binding immunoglobulin protein, and activating transcription factor 6), inflammatory response-related genes (interleukin-6 [IL-6], interleukin-1β [IL-1β], and interferon-γ) and apoptosis-related genes (bcl-2-associated X protein, b-cell lymphoma 2, Caspase-3, and Caspase-9) was significantly enhanced with 0.6 mM PA treatment. Additionally, small interfering RNA (siRNA) mediated downregulation of SCD1 significantly reduced the PA tolerance of goose primary hepatocytes under the treatment of 0.6 mM PA; meanwhile, the mRNA levels of inflammatory-related genes (IL-6 and IL-1β) and several key genes involved in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), forkhead box O1 (FoxO1), mammalian target of rapamycin and AMPK pathways (AKT1, AKT2, FoxO1, and sirtuin 1), as well as the protein expression of cytochrome C and the apoptosis rate were upregulated. Conclusion: In conclusion, our data suggested that SCD1 was involved in enhancing the PA tolerance of goose primary hepatocytes by regulating inflammation- and apoptosis-related genes expression.

Inhibition of cell growth and induction of apoptosis by acacetin in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Park, Jong-Hyun;Lim, Jin Woong;Yu, Sun-Kyoung;Kim, Heung-Joong;Shin, Sang Hun;Park, Bo-Ram;Kim, Chun Sung;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • 제45권3호
    • /
    • pp.107-114
    • /
    • 2020
  • Acacetin, which is present in damiana (Turnera diffusa) and black locust (Robinia pseudoacacia), has several pharmacologic activities such as antioxidant, anti-inflammatory, and anti-proliferative effects on cancer cells. However, the effect of acacetin on head and neck cancers has not been clearly established. This study aimed to examine the effects of acacetin on cell growth and apoptosis induction in FaDu human pharyngeal carcinoma cells. These were investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, Live/Dead cell assay, 4',6-diamidino-2-phenylindole dihydrochloride staining, caspase-3 and caspase-7 activation assay, and immunoblotting in FaDu cells. Acacetin induced FaDu cell death in a dose-dependent manner, with an estimated IC50 value of 41.9 µM, without affecting the viability of L-929 mouse fibroblasts as normal cells. Acacetin treatment resulted in nuclear condensation in the FaDu cells. It promoted the proteolytic cleavage of procaspase-3, -7, -8, and -9 with increasing amounts of the cleaved caspase isoforms in FaDu cells. Acacetin-induced apoptosis in FaDu cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting showed downregulation of the anti-apoptotic mitochondrial proteins Bcl-2 and Bcl-xL, but upregulation of the mitochondria-dependent pro-apoptotic proteins Bax and Badin FaDu cells after acacetin treatment. These findings indicate that acacetin inhibits cell proliferation and induces apoptotic cell death in FaDu human pharyngeal carcinoma cells via both the death receptor-mediated extrinsic apoptotic pathway and the mitochondria-mediated intrinsic apoptotic pathway.

Effect of (-)-epigallocatechin-3-gallate on maintaining the periodontal ligament cell viability of avulsed teeth: a preliminary study

  • Jung, Im-Hee;Yun, Jeong-Ho;Cho, Ah-Ran;Kim, Chang-Sung;Chung, Won-Gyun;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제41권1호
    • /
    • pp.10-16
    • /
    • 2011
  • Purpose: Avulsed tooth can be completely recovered, if sound periodontal ligament (PDL) of tooth is maintained. Although a lot of storage solutions have been explored for the better storage of avulsed tooth, there is a shortcoming that the preservation time is much short. On the other hand, there has been studies that (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, which is related to the anti inflammatory, antioxygenic, and antibacterial effects, allows the successful preservations of tissues and cells. This study evaluated the effect of EGCG on avulsed-teeth preservation of Beagle dogs for a period of time. Methods: The atraumatically extracted teeth of Beagle dogs were washed and preserved with 0/10/$100\;{\mu}M$ of EGCG at the time of immediate, period 1 (4 days in EGCG-contained media and additional 1 day in EGCG-free media), period 2 (8 days in EGCG-contained media and additional 2 days in EGCG-free media) and period 3 (12 days in EGCG-contained media and additional 2 days in EGCG-free media). Then, the cell viabilities of preserved teeth was calculated by dividing optical density (OD) of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with OD of eosin assay to eliminate the measurement errors caused by the different tissue volumes. Results: From the results, the immediately analyzed group presented the highest cell viability, and the rate of living cells on teeth surface decreased dependent on the preservation period. However, the $100\;{\mu}M$ of EGCG-treated group showed statistically significant positive cell activity than EGCG-free groups throughout preservation periods. Conclusions: Our findings showed that $100\;{\mu}M$ EGCG could maintain PDL cell viability of extracted tooth. These results suggest that although EGCG could not be a perfect additive for tooth preservation, it is able to postpone the period of tooth storage. However, further in-depth studies are required for more plausible use of EGCG.