• Title/Summary/Keyword: 3항 다항식

Search Result 25, Processing Time 0.02 seconds

On the Construction of the 90/150 State Transition Matrix Corresponding to the Trinomial x2n-1 + x + 1 (3항 다항식 x2n-1 + x + 1에 대응하는 90/150 상태전이행렬의 구성)

  • Kim, Han-Doo;Cho, Sung-Jin;Choi, Un-Sook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.383-390
    • /
    • 2018
  • Since cellular automata(CA) is superior to LFSR in randomness, it is applied as an alternative of LFSR in various fields. However, constructing CA corresponding to a given polynomial is more difficult than LFSR. Cattell et al. and Cho et al. showed that irreducible polynomials are CA-polynomials. And Cho et al. and Sabater et al. gave a synthesis method of 90/150 CA corresponding to the power of an irreducible polynomial, which is applicable as a shrinking generator. Swan characterizes the parity of the number of irreducible factors of a trinomial over the finite field GF(2). These polynomials are of practical importance when implementing finite field extensions. In this paper, we show that the trinomial $x^{2^n-1}+X+1$ ($n{\geq}2$) are CA-polynomials. Also the trinomial $x^{2^a(2^n-1)}+x^{2^a}+1$ ($n{\geq}2$, $a{\geq}0$) are CA-polynomials.

A New Trace Calculation Algorithm on Trinomial Irreducible Polynomial of RS code (RS-부호에 유용한 3항 기약 다항식에서 새로운 TRACE 연산 알고리즘)

  • Seo, Chang-Ho;Eun, Hui-Cheon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.1
    • /
    • pp.75-80
    • /
    • 1995
  • In this paper, we show that it is more efficient to use a new algorithm than to use a method of trace definition and property when we use trace calculation method on trinomial irreducible polynomial of reed-solomon code. This implementation has been done in SUN SPARC2 workstation using C-language.

  • PDF

Two Cubic Polynomials Selection for the Number Field Sieve (Number Field Sieve에서의 두 삼차 다항식 선택)

  • Jo, Gooc-Hwa;Koo, Nam-Hun;Kwon, Soon-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10C
    • /
    • pp.614-620
    • /
    • 2011
  • RSA, the most commonly used public-key cryptosystem, is based on the difficulty of factoring very large integers. The fastest known factoring algorithm is the Number Field Sieve(NFS). NFS first chooses two polynomials having common root modulo N and consists of the following four major steps; 1. Polynomial Selection 2. Sieving 3. Matrix 4. Square Root, of which the most time consuming step is the Sieving step. However, in recent years, the importance of the Polynomial Selection step has been studied widely, because one can save a lot of time and memory in sieving and matrix step if one chooses optimal polynomial for NFS. One of the ideal ways of choosing sieving polynomial is to choose two polynomials with same degree. Montgomery proposed the method of selecting two (nonlinear) quadratic sieving polynomials. We proposed two cubic polynomials using 5-term geometric progression.

Evaluation of The Image Segmentation Method for DEM Generation of Satellite Imagery (위성영상의 DEM 생성을 위한 영상분할 방법의 적합성 평가)

  • 이효성;송정헌;김용일;안기원
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.149-157
    • /
    • 2003
  • In this study, for efficient replacement of sensor modelling of high-resolution satellite imagery, image segmentation method is applied to the test area of the SPOT-3 satellite imagery. After that, a third-order polynomial model in the sectioned area is compared with the RFM which Is to the entire in the test area. As results, plane error of the third-order polynomial model is lower(approximately 0.8m) than that of RFM. On the other hand, height error of RFM is lower(approximately 1.0m).

Design of High-Speed Parallel Multiplier on Finite Fields GF(3m) (유한체 GF(3m)상의 고속 병렬 곱셈기의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2015
  • In this paper, we propose a new multiplication algorithm for primitive polynomial with all 1 of coefficient in case that m is odd and even on finite fields $GF(3^m)$, and design the multiplier with parallel input-output module structure using the presented multiplication algorithm. The proposed multiplier is designed $(m+1)^2$ same basic cells. Since the basic cells have no a latch circuit, the multiplicative circuit is very simple and is short the delay time $T_A+T_X$ per cell unit. The proposed multiplier is easy to extend the circuit with large m having regularity and modularity by cell array, and is suitable to the implementation of VLSI circuit.

Design of an Efficient Bit-Parallel Multiplier using Trinomials (삼항 다항식을 이용한 효율적인 비트-병렬 구조의 곱셈기)

  • 정석원;이선옥;김창한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.5
    • /
    • pp.179-187
    • /
    • 2003
  • Recently efficient implementation of finite field operation has received a lot of attention. Among the GF($2^m$) arithmetic operations, multiplication process is the most basic and a critical operation that determines speed-up hardware. We propose a hardware architecture using Mastrovito method to reduce processing time. Existing Mastrovito multipliers using the special generating trinomial p($\chi$)=$x^m$+$x^n$+1 require $m^2$-1 XOR gates and $m^2$ AND gates. The proposed multiplier needs $m^2$ AND gates and $m^2$+($n^2$-3n)/2 XOR gates that depend on the intermediate term xn. Time complexity of existing multipliers is $T_A$+( (m-2)/(m-n) +1+ log$_2$(m) ) $T_X$ and that of proposed method is $T_X$+(1+ log$_2$(m-1)+ n/2 ) )$T_X$. The proposed architecture is efficient for the extension degree m suggested as standards: SEC2, ANSI X9.63. In average, XOR space complexity is increased to 1.18% but time complexity is reduced 9.036%.

A Design of Multiplier Over $GF(2^m)$ using the Irreducible Trinomial ($GF(2^m)$의 기약 3 항식을 이용한 승산기 설계)

  • Hwang, Jong-Hak;Sim, Jai-Hwan;Choi, Jai-Sock;Kim, Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • The multiplication algorithm using the primitive irreducible trinomial $x^m+x+1$ over $GF(2^m)$ was proposed by Mastrovito. The multiplier proposed in this paper consisted of the multiplicative operation unit, the primitive irreducible operation unit and mod operation unit. Among three units mentioned above, the Primitive irreducible operation was modified to primitive irreducible trinomial $x^m+x+1$ that satisfies the range of 1$x^m,{\cdots},x^{2m-2}\;to\;x^{m-1},{\cdots},x^0$ is reduced. In this paper, the primitive irreducible polynomial was reduced to the primitive irreducible trinomial proposed. As a result of this reduction, the primitive irreducible trinomial reduced the size of circuit. In addition, the proposed design of multiplier was suitable for VLSI implementation because the circuit became regular and modular in structure, and required simple control signal.

  • PDF

AVO analysis using crossplot and amplitude polynomial methods for characterisation of hydrocarbon reservoirs (탄화수소 부존구조 평가를 위한 교차출력과 진폭다항식을 이용한 AVO 분석)

  • Kim, Ji-Soo;Kim, Won-Ki;Ha, Hee-Sang;Kim, Sung-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.25-41
    • /
    • 2011
  • AVO analysis was conducted on hydrocarbon-bearing structures by applying the crossplot and offset-coordinate amplitude polynomial techniques. To evaluate the applicability of the AVO analysis, it was conducted on synthetic data that were generated with an anticline model, and field data from the hydrocarbon-bearing Colony Sand bed in Canada. Analysis of synthetic data from the anticline model demonstrates that the crossplot method yields zero-offset reflection amplitude and amplitude variation with negative values for the upper interface of the hydrocarbon-bearing layer. The crossplot values are clustered in the third quadrant. The results of AVO analysis based on the coefficients of the amplitude polynomial are similar to those from the crossplots. These well correlated results of AVO analysis on field and synthetic data suggest that both methods successfully investigate the characteristics of the reflections from the upper interface of a hydrocarbon-bearing layer. Analysis based on the incident-angle equation facilitates the application of various interpretation methods. However, it requires the conversion of seismic data to an incident angle gather. By contrast, analysis using coefficients of the amplitude polynomial is cost-effective because it allows examining amplitude variation with offset without involving the conversion process. However, it warrants further investigation into versatile application. The two different techniques can be complement each other effectively as AVO-analysis tools for the detection of hydrocarbon reservoirs.

Modeling and Digital Predistortion Design of RF Power Amplifier Using Extended Memory Polynomial (확장된 메모리 다항식 모델을 이용한 전력 증폭기 모델링 및 디지털 사전 왜곡기 설계)

  • Lee, Young-Sup;Ku, Hyun-Chul;Kim, Jeong-Hwi;Ryoo, Kyoo-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1254-1264
    • /
    • 2008
  • This paper suggests an extended memory polynomial model that improves accuracy in modeling memory effects of RF power amplifiers(PAs), and verifies effectiveness of the suggested method. The extended memory polynomial model includes cross-terms that are products of input terms that have different delay values to improve the limited accuracy of basic memory polynomial model that includes the diagonal terms of Volterra kernels. The complexity of the memoryless model, memory polynomial model, and the suggested model are compared. The extended memory polynomial model is represented with a matrix equation, and the Volterra kernels are extracted using least square method. In addition, the structure of digital predistorter and digital signal processing(DSP) algorithm based on the suggested model and indirect learning method are proposed to implement a digital predistortion linearization. To verify the suggested model, the predicted output of the model is compared with the measured output for a 10W GaN HEMT RF PA and 30 W LDMOS RF PA using 2.3 GHz WiBro input signal, and adjacent-channel power ratio(ACPR) performance with the proposed digital predistortion is measured. The proposed model increases model accuracy for the PAs, and improves the linearization performance by reducing ACPR.

An Improved Reversible Secret Image Sharing Scheme based on GF(28) (유한 체 기반의 개선된 가역 비밀이미지 공유 기법)

  • Kim, Dong-Hyun;Kim, Jung-Joon;Yoo, Kee-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.3
    • /
    • pp.359-370
    • /
    • 2013
  • Lin and Chan proposed a reversible secret image sharing scheme in 2010. The advantages of their scheme are as follows: the low distortion ratio, high embedding capacity of shadow images and usage of the reversible. However, their scheme has some problems. First, the number of participants is limited because of modulus prime number m. Second, the overflow can be occurred by additional operations (quantized value and the result value of polynomial) in the secret sharing procedure. Finally, if the coefficient of (t-1)th degree polynomial become zero, (t-1) participants can access secret data. In this paper, an improved reversible secret image sharing scheme which solves the problems of Lin and Chan's scheme while provides the low distortion ratio and high embedding capacity is proposed. The proposed scheme solves the problems that are a limit of a total number of participants, and occurrence of overflow by new polynomial operation over GF($2^8$). Also, it solve problem that the coefficient of (t-1)th degree polynomial become zero by fixed MSB 4-bit constant. In the experimental results, PSNR of their scheme is decreased with the increase of embedding capacity. However, even if the embedding capacity increase, PSNR value of about 45dB or more is maintained uniformly in the proposed scheme.