• Title/Summary/Keyword: 3차원 전자탐사 모델링

Search Result 32, Processing Time 0.026 seconds

A Study on Using Finite Difference-Time Domain Modeling of Electromagnetic Wave Propagation for Thickness Determination and Rebar Detection in Concrete Specimens (유한차분 시간영역법을 이용한 콘크리트의 두께측정과 철근위치 탐사를 위한 전자기파 전파 모델링)

  • 임홍철;조윤범
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.639-648
    • /
    • 1999
  • 레이더법은 건축구조물에 대한 비파괴 검사의 대표적인 방법의 하나이다. 레이더법을 이용하는데 영향을 주는 요인들을 연구하고, 레이더로 측정된 결과들을 분석하기 위해서는 전자기파의 전파에 대한 수치적인 모델링을 통한 이론적인 접근이 필요하다. 콘크리트 시편에 전파되는 전자기파를 모델링 하기 위해 유한차분 시간영역법을 적용하고자 한다. 유한차분 시간영역법은 전자파 해석과 모델링을 통한 시뮬레이션에 매우 유용한 방법이다. 본 연구에서는 유한차분 시간영역법을 이용하여 두께가 다른 4개의 시편과 두께는 100㎜로 동일하고 피복두께가 다른 3개의 시편을 3차원으로 모델링 하였다. 두께 측정 모델링 결과에서는 계산영역의 셀간격과 입사파의 파장/콘크리트 시편의 두께값이 모델링의 정확성에 미치는 영향을 알 수 있었다. 철근이 있는 시편의 모델링에서는 0.08%∼0.5%의 오차로 철근의 위치를 확인할 수 있었다.

  • PDF

Theoretical Research for Unmanned Aircraft Electromagnetic Survey: Electromagnetic Field Calculation and Analysis by Arbitrary Shaped Transmitter-Loop (무인 항공 전자탐사 이론 연구: 임의 모양의 송신루프에 의한 전자기장 반응 계산 및 분석)

  • Bang, Minkyu;Oh, Seokmin;Seol, Soon Jee;Lee, Ki Ha;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.150-161
    • /
    • 2018
  • Recently, unmanned aircraft EM (electromagnetic) survey based on ICT (Information and Communication Technology) has been widely utilized because of the efficiency in regional survey. We performed the theoretical study on the unmanned airship EM system developed by KIGAM (Korea Institute of Geoscience and Mineral resources) as part of the practical application of unmanned aircraft EM survey. Since this system has different configurations of transmitting and receiving loops compared to the conventional aircraft EM systems, a new technique is required for the appropriate interpretation of measured responses. Therefore, we proposed a method to calculate the EM field for the arbitrary shaped transmitter and verified its validity through the comparison with analytic solution for circular loop. In addition, to simulate the magnetic responses by three-dimensionally (3D) distributed anomalies, we have adapted our algorithm to 3D frequency-domain EM modeling algorithm based on the edge-FEM (finite element method). Though the analysis on magnetic field responses from a subsurface anomaly, it was found that the response decreases as the depth of the anomaly increases or the flight altitude increases. Also, it was confirmed that the response became smaller as the resistivity of the anomaly increases. However, a nonlinear trend of the out-of-phase component is shown depending on the depth of the anomaly and the used frequency, that makes it difficult to apply simple analysis based on the mapping of the magnitude of the responses and can cause the non-uniqueness problem in calculating the apparent resistivity. Thus, it is a prerequisite to analyze the appropriate frequency band and flight altitude considering the purpose of the survey and the site conditions when conducting a survey using the unmanned aircraft EM system.

Utilization of Database in 3D Visualization of Remotely Sensed Data (원격탐사 영상의 3D 시각화와 데이터베이스의 활용)

  • Jung, Myung-Hee;Yun, Eui-Jung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.40-46
    • /
    • 2008
  • 3D visualization of geological environments using remotely sensed data and the various sources of data provides new methodology to interpret geological observation data and analyze geo-information in earth science applications. It enables to understand spatio-temporal relationships and causal processes in the three-dimension, which would be difficult to identify without 3D representation. To build more realistic geological environments, which are useful to recognize spatial characteristics and relationships of geological objects, 3D modeling, topological analysis, and database should be coupled and taken into consideration for an integrated configuration of the system. In this study, a method for 3D visualization, extraction of geological data, storage and data management using remotely sensed data is proposed with the goal of providing a methodology to utilize dynamic spatio-temporal modeling and simulation in the three-dimension for geoscience and earth science applications.

Interpretation on GDS(Geomagnetic Depth Sounding) data in and around Korean peninsula using 3-D MT modeling (3차원 MT 모델링을 통한 한반도 및 주변의 GDS(Geomagnetic Depth Sounding) 자료 해석)

  • Yang, Jun-Mo;Kwon, Byung-Doo;Ryu, Yong-Gyu;Youn, Yong-Hoon
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.124-131
    • /
    • 2005
  • A GDS (Geomagnetic Depth Sounding) method, one of extremely low-frequency EM methods, has been carried out to examine deep geo-electrical structures of the Korean peninsula. In this study, five additive GDS sites acquired in south-eastern area of the Korea were integrated into twelve previous GDS results. In addition, 3-D MT modeling considering the surrounding seas of the Korean peninsula was performed to evaluate sea effect at each GDS site quantitatively. As a result, Observed real induction arrows was not explained by solely sea effect, two conductive structures that are able to explain differences between observed and calculated induction arrows, was suggested. The first conductive structure is the Imjingang Belt, which is thought as a extension of Quiling-Dabie-sulu continental collision belt. The effects of the Imjingang Belt clearly appear at YIN and ICHN sites. The second one is the HCL (Highly Conductive Layer), which is considered as a conductive anomaly by mantle upwelling generated in back-basin region. The effects of the HCL are also confirmed at KZU, KMT101, 107 sites, in the south-eastern of the Korean peninsula.

  • PDF

Magnetotelluric modeling considering vertical transversely isotropic electrical anisotropy (수직 횡등방성 전기적 이방성을 고려한 자기지전류탐사 모델링)

  • Kim, Bitnarae;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.232-240
    • /
    • 2015
  • Magnetotelluric (MT) survey investigates electrical structure of subsurface by measuring natural electromagnetic fields on the earth surface. For the accurate interpretation of MT data, the precise three-dimensional (3-D) modeling algorithm is prerequisite. Since MT responses are affected by electrical anisotropy of medium, the modeling algorithm has to incorporate the electrical anisotropy especially when analyzing time-lapse MT data sets, for monitoring engineered geothermal system (EGS) reservoir, because changes in different-vintage MT-data sets are small. This study developed a MT modeling algorithm for the simulation MT responses in the presence of electrical anisotropy by improving a pre-existing staggered-grid finite-difference MT modeling algorithm. After verifying the developed algorithm, we analyzed the effect of vertical transversely isotropic (VTI) anisotropy on MT responses. In addition, we are planning to extend the applicability of the developed algorithm which can simulate not only the horizontal transversely isotropic (HTI) anisotropy, but also the tiled transversely isotropic (TTI) anisotropy.

EM Responses of Buried Conductive Pipes Calculated by 3-D Finite Element Method (3차원 FEM 모델링에 의한 수평 도전성 관로의 전자기 반응 특성)

  • Chung Ho-Joon;Jung Hyun-Key;Park Yeong-Sue;Jo Chul-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.48-52
    • /
    • 2000
  • We have calculated and analyzed the electromagnetic responses of buried conductive pipes due to a horizontal magnetic dipole source on the pound using a three-dimensional (3-D) finite element method to provide useful guidelines for designing electromagnetic pipe locator and for field operation of the system. For single buried pipe, the horizontal component and the horizontal difference of the vertical component of magnetic field show peaks above the pipe. When comparing the width of response curves of both cases around the peak, horizontal difference of vertical component of magnetic field shows much narrower peak, 2 times narrower at a half of maximum amplitude, than that of horizontal component of magnetic field. Accordingly, we can pinpoint the horizontal location of pipe on the ground more accurately by measuring the horizontal difference of vertical component of magnetic fold. Moreover, it will have a merit in determining the depth of pipe, because the equation for depth estimation is defined just above the pipe. When there are two buried pipes separated by two meters with each other, the response of horizontal difference of vertical component of magnetic field has two separate peaks each of which is located above the pipe whereas horizontal magnetic field response has only one peak above the pipe just below the transmitter. Thus, when there exist more than a buried pipe, measuring the horizontal difference of vertical magnetic field can effectively detect not only the pipe under transmitter but also adjacent ones. The width of response curves also indicates higher resolving ability of horizontal difference of vertical component of magnetic field.

  • PDF

Modeling of Magnetotelluric Data Based on Finite Element Method: Calculation of Auxiliary Fields (유한요소법을 이용한 MT 탐사 자료의 모델링: 보조장 계산의 고찰)

  • Nam, Myung-Jin;Han, Nu-Ree;Kim, Hee-Joon;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.164-175
    • /
    • 2011
  • Using natural electromagnetic (EM) fields at low frequencies, magnetotelluric (MT) surveys can investigate conductivity structures of the deep subsurface and thus are used to explore geothermal energy resources and investigate proper sites for not only geological $CO_2$ sequestration but also enhanced geothermal system (EGS). Moreover, marine MT data can be used for better interpretation of marine controlled-source EM data. In the interpretation of MT data, MT modeling schemes are important. This study improves a three dimensional (3D) MT modeling algorithm which uses edge finite elements. The algorithm computes magnetic fields by solving an integral form of Faraday's law of induction based on a finite difference (FD) strategy. However, the FD strategy limits the algorithm in computing vertical magnetic fields for a topographic model. The improved algorithm solves the differential form of Faraday's law of induction by making derivatives of electric fields, which are represented as a sum of basis functions multiplied by corresponding weightings. In numerical tests, vertical magnetic fields for topographic models using the improved algorithm overcome the limitation of the old algorithm. This study recomputes induction vectors and tippers for a 3D hill and valley model which were used for computation of the responses using the old algorithm.

Development of Three-dimensional Inversion Algorithm of Complex Resistivity Method (복소 전기비저항 3차원 역산 알고리듬 개발)

  • Son, Jeong-Sul;Shin, Seungwook;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.180-193
    • /
    • 2021
  • The complex resistivity method is an exploration technique that can obtain various characteristic information of underground media by measuring resistivity and phase in the frequency domain, and its utilization has recently increased. In this paper, a three-dimensional inversion algorithm for the CR data was developed to increase the utilization of this method. The Poisson equation, which can be applied when the electromagnetic coupling effect is ignored, was applied to the modeling, and the inversion algorithm was developed by modifying the existing algorithm by adopting comlex variables. In order to increase the stability of the inversion, a technique was introduced to automatically adjust the Lagrangian multiplier according to the ratio of the error vector and the model update vector. Furthermore, to compensate for the loss of data due to noisy phase data, a two-step inversion method that conducts inversion iterations using only resistivity data in the beginning and both of resistivity and phase data in the second half was developed. As a result of the experiment for the synthetic data, stable inversion results were obtained, and the validity to real data was also confirmed by applying the developed 3D inversion algorithm to the analysis of field data acquired near a hydrothermal mine.

Three-dimensional Cross-hole EM Modeling using the Extended Born Approximation (확장 Born 근사에 의한 시추공간 3차원 전자탐사 모델링)

  • Lee, Seong-Kon;Kim, Hee-Joon;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.86-95
    • /
    • 1999
  • This paper presents an efficient three-dimensional (3-D) modeling algorithm using the extended approximation to an electric field integral equation. Numerical evaluations of Green's tensor integral are performed in the spatial wavenumber domain. This approach makes it possible to reduce computing time, to handle smoothly varying conductivity model and to remove singularity problems encountered in the integration of Green's tensor at a source point. The responses obtained by 3-D modeling algorithm developed in this study are compared with those by the full integral equation for a thin-sheet EM scattering. The extensive analyses on the performance of modeling algorithm are made with the conductivity contrasts and source frequencies. These results show that the modeling algorithm are accurate up to the conductivity contrast of 1:16 and the frequency range of 100 Hz-100 kHz. The extended Born approximation, however, may produce inaccurate results for some source and model configurations in which the electric field is discontinuous across the conductivity boundary. We performed the modeling of a composite model of which conductivity varies continuously and this shows the modeling algorithm developed in this study is efficient for 3-D EM modeling. For a cross-hole source-receiver configuration a composite model of which conductivity varies continuously can be successfully simulated using this algorithm.

  • PDF

Electrical Resistivity Methods in Korea (한국의 전기비저항탐사)

  • Kim, Hee-Joon
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.473-483
    • /
    • 2006
  • Although application of electrical methods in Korea began with observation of self potentials before World War II, the methods were developed slowly by the beginning of 1980's when a major burst of development activity took place. DC resistivity methods are applied in Korea more to geotechnical problems rather than to environmental ones unlike other developed countries. As with every other branch of technology, the evolving speed of the silicon chip and of streaming data to hard disk has revolutionized data collection and noise reduction processing. The last two decades saw major advances in data collection, processing, and interpretation of electrical data. Development of smooth-model two-dimensional (2D) resistivity inversion is one of the most visible changes to geophysical interpretation of the last 40 years and is now routinely applied to apparent resistivity data. The ability to represent resistivities in section rather than pseudosection view has revolutionized interpretation. Although calculation of sensitivities for general electromagnetic problems require numerous forward modelings, DC resistivity methods can enjoy computational efficiencies if sources and receivers occupy the same position, and previously intractable 3D inversion is now becoming available.