• Title/Summary/Keyword: 3차원 입체조형치료

Search Result 70, Processing Time 0.023 seconds

On-line Image Guided Radiation Therapy using Cone-Beam CT (CBCT) (콘빔CT (CBCT)를 이용한 온라인 영상유도방사선치료 (On-line Image Guided Radiation Therapy))

  • Bak, Jin-O;Jeong, Kyoung-Keun;Keum, Ki-Chang;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.294-299
    • /
    • 2006
  • $\underline{Purpose}$: Using cone beam CT, we can compare the position of the patients at the simulation and the treatment. In on-line image guided radiation therapy, one can utilize this compared data and correct the patient position before treatments. Using cone beam CT, we investigated the errors induced by setting up the patients when use only the markings on the patients' skin. $\underline{Materials\;and\;Methods}$: We obtained the data of three patients that received radiation therapy at the Department of Radiation Oncology in Chung-Ang University during August 2006 and October 2006. Just as normal radiation therapy, patients were aligned on the treatment couch after the simulation and treatment planning. Patients were aligned with lasers according to the marking on the skin that were marked at the simulation time and then cone beam CTs were obtained. Cone beam CTs were fused and compared with simulation CTs and the displacement vectors were calculated. Treatment couches were adjusted according to the displacement vector before treatments. After the treatment, positions were verified with kV X-ray (OBI system). $\underline{Results}$: In the case of head and neck patients, the average sizes of the setup error vectors, given by the cone beam CT, were 0.19 cm for the patient A and 0.18 cm for the patient B. The standard deviations were 0.15 cm and 0.21 cm, each. On the other hand, in the case of the pelvis patient, the average and the standard deviation were 0.37 cm and 0.1 cm. $\underline{Conclusion}$: Through the on-line IGRT using cone beam CT, we could correct the setup errors that could occur in the conventional radiotherapy. The importance of the on-line IGRT should be emphasized in the case of 3D conformal therapy and intensity-modulated radiotherapy, which have complex target shapes and steep dose gradients.

The Evaluation of Composite Dose using Deformable Image Registration in Adaptive Radiotherapy for Head and Neck Cancer (두경부 종양의 적응방사선치료시 변형영상정합을 이용한 합성선량 평가)

  • Hwang, Chul-Hwan;Ko, Seong-Jin;Kim, Chang-Soo;Kim, Jung-Hoon;Kim, Dong-Hyun;Choi, Seok-Yoon;Ye, Soo-Young;Kang, Se-Sik
    • Journal of radiological science and technology
    • /
    • v.36 no.3
    • /
    • pp.227-235
    • /
    • 2013
  • In adaptive radiotherapy(ART), generated composite dose of surrounding normal tissue on overall treatment course which is using deformable image registration from multistage images. Also, compared with doses summed by each treatment plan and clinical significance is considered. From the first of May, 2011 to the last of July, 2012. Patients who were given treatment and had the head and neck cancer with 3-dimension conformal radiotherapy or intensity modulated radiotherapy, those who were carried out adaptive radiotherapy cause of tumor shrinkage and weight loss. Generated composite dose of surrounding normal tissue using deformable image registration was been possible, statistically significant difference was showed to mandible($48.95{\pm}3.89$ vs $49.10{\pm}3.55$ Gy), oral cavity($36.93{\pm}4.03$ vs $38.97{\pm}5.08$ Gy), parotid gland($35.71{\pm}6.22$ vs $36.12{\pm}6.70$ Gy) and temporomandibular joint($18.41{\pm}9.60$ vs $20.13{\pm}10.42$ Gy) compared with doses summed by each treatment plan. The results of this study show significant difference between composite dose by deformable image registration and doses summed by each treatment plan, composite dose by deformable image registration may generate more exact evaluation to surrounding normal tissue in adaptive radiotherapy.

PTV Margins for Prostate Treatments with an Endorectal Balloon (전립선 암의 방사선치료 시 직장 내 풍선삽입에 따른 계획표적부피마진)

  • Kim, Hee-Jung;Chung, Jin-Beom;Ha, Sung-Whan;Kim, Jae-Sun;Ye, Sung-Joon
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.166-176
    • /
    • 2010
  • Purpose: To determine the appropriate prostate planning target volume (PTV) margins for 3-dimensitional (3D) conformal radiotherapy (CRT) and intensity-modulated radiation therapy (IMRT) patients treated with an endorectal balloon (ERB) under our institutional treatment condition. Materials and Methods: Patients were treated in the supine position. An ERB was inserted into the rectum with 70 cc air prior to planning a CT scan and then each treatment fraction. Electronic portal images (EPIs) and digital reconstructed radiographs (DRR) of planning CT images were used to evaluate inter-fractional patient's setup and ERB errors. To register both image sets, we developed an in-house program written in visual $C^{++}$. A new method to determine prostate PTV margins with an ERB was developed by using the common method. Results: The mean value of patient setup errors was within 1 mm in all directions. The ERB inter-fractional errors in the superior-inferior (SI) and anterior-posterior (AP) directions were larger than in the left-right (LR) direction. The calculated 1D symmetric PTV margins were 3.0 mm, 8.2 mm, and 8.5 mm for 3D CRT and 4.1 mm, 7.9 mm, and 10.3 mm for IMRT in LR, SI, and AP, respectively according to the new method including ERB random errors. Conclusion: The ERB random error contributes to the deformation of the prostate, which affects the original treatment planning. Thus, a new PTV margin method includes dose blurring effects of ERB. The correction of ERB systematic error is a prerequisite since the new method only accounts for ERB random error.

The dosimetric guide of treatment modalities for Left side breast irradiation after conservative surgery (좌측 유방암 방사선 치료 시 치료 기법에 따른 선량적 고찰)

  • Kim, Tae Min;Moon, Sung Kong;Kim, Li Zzy;Kim, Se Young;Park, Ryeung Hwang;Kim, Joo Ho;Cho, Jung Heui
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.153-160
    • /
    • 2018
  • Purpose : We retrospectively analyzed doses of each radiation therapy technique used in the treatment for left breast cancer patients after partial mastectomy through dose results for normalorgans and tumor volume to use this as a clinical reference for radiation therapy of domestic left breast cancer patients. Materials and Methods : 40 patients who underwent partial mastectomy on left breast cancer were classified in 3 treatment methods. The treatment plan was evaluated by HI(homogeneity index), $D_{95%}$, and CI(conformity index), and the $V_{hot}$ for gross tumor volume and clinical target volume of each treatment method. In Cyberknife treatment, tumor volume was the same as high dose volume in the other techniques, so no consideration was given to clinical target volume. Treatment plan evaluation for normal organs were evaluated by mean dose on ipsilateral lung, heart, left anterior descending artery, opposite breast and lung, and non-target tissue. Result : Treatment with volumetric arc radiotherapy(VMAT) showed $95.84{\pm}0.75%$ of $D_{95%}$ on the clinical target volume, significantly higher than that of 3D-CRT. The $D_{95%}$ value of the total tumor volume was slightly higher than the other treatments. In Cyberknife treatment, the dose to the normal organs was significantly lower than other treatments. Overall, the maximum dose and mean dose to the heart were $26.2{\pm}6.12Gy$ and $1.88{\pm}0.2Gy$ in VMAT treatment and $20.25{\pm}9.35Gy$ and $1.04{\pm}0.19Gy$ in 3D-CRT therapy, respectively. Conclusion : In comparison on 3D-CRT and VMAT, most of the dosimetric parameters for the evaluation of the treatment plan showed similar values, so that there is no significant difference in treatment plan evaluation. It is possible to select the treatment method according to the patient's anatomical structure or possibility of breath control. Cyberknife treatment is very useful treatment for normal organs because of its accurate dose exposure to the tumor volume However, it has restrictions to treat the local area, to have relatively long treatment time and to involve invasive procedure.

  • PDF

Bladder Preserving Treatment in Patients with Muscle Invasive Bladder Cancer (근침윤성 방광암 환자의 방광 보존적 치료 결과)

  • Yu, Jeong-Il;Oh, Dong-Ryol;Huh, Seung-Jae;Choi, Han-Yong;Lee, Hyon-Moo;Jeon, Seong-Soo;Yim, Ho-Young;Kim, Won-Suk;Lim, Do-Hoon;Ahn, Yong-Chan;Park, Won
    • Radiation Oncology Journal
    • /
    • v.25 no.2
    • /
    • pp.70-78
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: This study analyzed the tumor response, overall survival, progression free survival and related prognostic factors in patients with muscle invasive bladder cancer subjected to bladder preserving treatment. $\underline{Materials\;and\;Methods}$: Between August 1995 and June 2004, 37 patients with muscle invasive (transitional cell carcinoma, clinically stage T2-4) bladder cancer were enrolled for the treatment protocol of bladder preservation. There were 33 males and 4 females, and the median age was 67 years (range $38{\sim}86\;years$). Transurethral resection of the bladder (TURB) was performed in 17 patients who underwent complete resection. The median radiation dose administered was 64.8 Gy (range $55.8{\sim}67\;Gy$). The survival rate was calculated by the Kaplan-Meier method. $\underline{Results}$: An evaluation of the response rate was determined by abdomen-pelvic CT and cystoscopy at three months after radiotherapy. A complete response was seen in 17 patients (46%). The survival rate at three years was 54.7%, with 54 months of median survival (range $3{\sim}91$ months). During the study, 17 patients died and 13 patients had died from bladder cancer. The progression free survival rate at three years was 37.2%. There were 24 patients (64.9%) who had disease recurrence: 16 patients (43.2%) had local recurrence, 6 patients (16.2%) had a distant recurrence, and 2 patients (5.4%) had both a local and distant recurrence. The survival rate (p=0.0009) and progression free survival rates (p=0.001) were statistically significant when compared to the response rate after radiotherapy. $\underline{Conclusion}$: The availability of complete TURB and appropriate chemoradiotherapy were important predictors for bladder preservation and survival.

A Study on lung dose of Intensity modulated and volumetric modulated arc therapy plans using restricted angle of Non-small cell lung cancer (비소세포 폐암의 제한된 각도를 이용한 세기변조와 용적변조회전 방사선치료계획의 폐 선량에 관한 연구)

  • Yeom, Misuk;Lee, Woosuk;Kim, Daesup;Back, Geummun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Purpose : For non-small cell lung cancer, if the treatment volume is large or the total lung volume is small, and the tumor is located in midline of patient's body, total lung dose tends to increase due to tolerance dose of spinal cord. The purpose of this study is to compare and evaluate the total lung dose of three dimensional conformal radiotherapy(3D CRT), intensity modulated radiotherapy(IMRT) and volumetric modulated arc therapy(VMAT) using restricted angle for non-small cell lung cancer patients. Materials and Methods : The treatment plans for four patients, being treated on TrueBeam STx($Varian^{TM}$, USA) with 10 MV and prescribed dose of 60 Gy in 30 fractions, 3D CRT, restricted angle IMRT and VAMT radiotherapy plans were established. Planning target volume(PTV), dose to total lung and spinal cord were evaluated using the dose volume histogram(DVH). Conformity index(CI), homogeneity index(HI), Paddick's index(PCI) for the PTV, $V_{30}$, $V_{20}$, $V_{10}$, $V_5$, mean dose for total lung and maximum dose for spinal cord was assessed. Results : Average value of CI, HI and PCI for PTV was $0.944{\pm}0.009$, $1.106{\pm}0.027$, $1.084{\pm}0.016$ respectively. $V_{20}$ values from 3D CRT, IMRT and VMAT plans were 30.7%, 20.2% and 21.2% for the first patient, 33.0%, 29.2% and 31.5% for second patient, 51.3%, 34.3% and 36.9% for third patient, finally 56.9%, 33.7% and 40.0% for the last patient. It was noticed that the $V_{20}$ was lowest in the IMRT plan using restricted angle. Maximum dose for spinal cord was evaluated to lower than the tolerance dose. Conclusion : For non-small cell lung cancer, IMRT with restricted angle or VMAT could minimize the lung dose and lower the dose to spinal cord below the tolerance level. Considering PTV coverage and tolerance dose to spinal cord, it was possible to obtain IMRT plan with smaller angle and this could result in lower dose to lung when compared to VMAT.

Objective Analysis of the Set-up Error and Tumor Movement in Lung Cancer Patients using Electronic Portal Imaging Device (폐암 환자에서 Electronic Portal Imaging Device를 이용한 자세 오차 및 종양 이동 거리의 객관적 측정)

  • Kim, Woo-Cheol;Chung, Eun-Ji;Lee, Chang-Geol;Chu, Sung-Sil;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.14 no.1
    • /
    • pp.69-76
    • /
    • 1996
  • Purpose : The aim of this study is to investigate the random and systematic errors and tumor movement using electronic portal imaging device in lung cancer patients for the adequate margin in the treatment planning of 3-dimensional conformal therapy. Material and Methods : The electronic portal imaging device is matrix ion chamber type(Portal Vision, Varian). Ten patients of lung cancer treated with chest irradiation were selected for this study. Patients were treated in the supine position without immobilization device. All treatments were delivered by an 10 MV linear accelerator that had the portal imaging system mounted to its ganrty. AP or PA field Portal images were only analyzed. Radiation therapy field included the tumor, mediastinum and supraclavicular lymph nodes. A total of 103 portal images were analyzed for set-up deviation and 10 multiple images were analyzed for tumor movement because of respiration and cardiac motion. Result : The average values of setup displacements in the x, y direction was 1.41 mm, 1 78 mm, respectively. The standard deviation of systematic component was 4.63 mm, 4.11 mm along the x, y axis, respectively while the random component was 4.17 mm in the x direction and 3.31 mm in the y direction. The average displacement from respiratory movement was 12.2 mm with a standard deviation of 4.03 mm. Conclusion : The overall set-up displacement includes both random and systematic component and respiratory movement. About 10 mm, 25 mm margins along x, y axis which considered the set-up displacement and tumor movement were required for initial 3-dimensional conformal treatment planning in the lung cancer patients and portal images should be made and analyzed during first week of treatment, individually.

  • PDF

Comparison of Dose Distributions Calculated by Anisotropic Analytical Algorithm and Pencil Beam Convolution Algorithm at Tumors Located in Liver Dome Site (간원개에 위치한 종양에 대한 Anisotropic Analyticalal Algorithm과 Pencil Beam Convolution 알고리즘에 따른 전달선량 비교)

  • Park, Byung-Do;Jung, Sang-Hoon;Park, Sung-Ho;Kwak, Jeong-Won;Kim, Jong-Hoon;Yoon, Sang-Min;Ahn, Seung-Do
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.106-113
    • /
    • 2012
  • The purpose of this study is to evaluate the variation of radiation dose distribution for liver tumor located in liver dome and for the interest organs(normal liver, kidney, stomach) with the pencil beam convolution (PBC) algorithm versus anisotropic Analyticalal algorithm (AAA) of the Varian Eclipse treatment planning system, The target volumes from 20 liver cancer patients were used to create treatment plans. Treatment plans for 10 patients were performed in Stereotactic Body Radiation Therapy (SBRT) plan and others were performed in 3 Dimensional Conformal Radiation Therapy (3DCRT) plan. dose calculation was recalculated by AAA algorithm after dose calculation was performed by PBC algorithm for 20 patients. Plans were optimized to 100% of the PTV by the Prescription Isodose in Dose Calculation with the PBC algorithm. Plans were recalculated with the AAA, retaining identical beam arrangements, monitor units, field weighting and collimator condition. In this study, Total PTV was to be statistically significant (SRS: p=0.018, 3DCRT: p=0.006) between PBC and AAA algorithm. and in the case of PTV, ITV in liver dome, plans for 3DCRT were to be statistically significant respectively (p=0.013, p=0.024). normal liver and kidney were to be statistically significant (p=0.009, p=0.037). For the predictive index of dose variation, CVF ratio was to be statistically significant for PTV in the liver dome versus PTV (SRS r=0.684, 3DCRT r=0.732, p<0.01) and CVF ratio for Tumor size was to be statistically significant (SRS r=-0.193, p=0.017, 3DCRT r=0.237, p=0.023).

A Study of Dose Stability at Low Monitor Unit Setting for Multiple Irradiated Field (다중 조사면 치료 시 기계적 입력치(MU)에 따른 선량적 안정성에 대한 연구)

  • Kim Joo-Ho;Lee Sang-Gyu;Shin Hyun-Kyung;Lee Suk;Na Soo-Kyung;Cho Jung-Hee;Kim Dong-Wook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Purpose : Many authors have been introduced field in field technique and 3-D conformal radiotherapy that increased the tumor dose as well as decreased the dose of abutting critical organ. These technique have multiple beam direction and small beam segments even below 10 MU(monitor unit)for each field. we have confirmed the influence of low MU on dose output and beam stability. Materials and Methods : To study the dose output, the dose for each field was always 90MU, but it divided into different segment size: 1, 2, 3, 5, 10, 15 segments, 90, 45, 30, 18, 9, 6 MU the measurements were carried out for X-ray energy 4 MV, 6 MV, 10 MV of three LINAC(Varian 600C, 2100C, 2100C, 2100C/D), in addition each measurement was randomly repeated three times for each energy. To study the field symmetry and flatness, X-omat V films were irradiated. After being developed, films were scanned and analyzed using densitometer. Results : Influence of low MU on dose is slightly more increase output about $1.2{\sim}2.9%$ in cGy/mu than 90MU, but may not changed beam quality(flatness or symmetry), Output stability depends on dose rate(PRF)rather than beam energy, field size. Conclusion : Presented result are under the limits(out put<3%, flatness<${\pm}3%$, symmetry<2%). The 3 accelerators are safe to use and to perform conformal radiotherapy treatments in small segments, small MU around 10MU. but Even if the result presented here under the limits, continuous adjustments and periodic QA should be done for use of small MU

  • PDF

Location Error of the Dens in a Two-Dimensional Set-up Verification During Head and Neck Radiotherapy (뇌.두경부 방사선치료 시 전자조사문영상장치를 이용한 세트업 오차 확인에서 제2경추 치상돌기 위치의 임상적 의의)

  • Kim, Dong-Hyun;Kim, Won-Taek;Ki, Yong-Gan;Nam, Ji-Ho;Lee, Mi-Ran;Jeon, Ho-Sang;Park, Dal;Kim, Dong-Won
    • Radiation Oncology Journal
    • /
    • v.29 no.2
    • /
    • pp.107-114
    • /
    • 2011
  • Purpose: To assess the degree and clinical impact of location error of the dens on the X-axis during radiotherapy to brain and head and neck tumors. Materials and Methods: Twenty-one patients with brain tumors or head and neck tumors who received three-dimensional conformal radiation therapy or intensity-modulated radiation therapy from January 2009 to June 2010 were included in this study. In comparison two-dimensional verification portal images with initial simulation images, location error of the nasal septum and the dens on the X-axis was measured. The effect of set-up errors of the dens was simulated in the planning system and analyzed with physical dose parameters. Results: A total of 402 portal images were reviewed. The mean location error at the nasal septum was 0.16 mm and at the dens was 0.33 mm (absolute value). Location errors of more than 3 mm were recorded in 43 cases (10.7%) at the nasal septum, compared to 133 cases (33.1%) at the dens. There was no case with a location error more than 5 mm at the nasal septum, compared to 11 cases (2.7%) at the dens. In a dosimetric simulation, a location error more than 5 mm at the dens could induce a reduction in the clinical target volume 1 coverage (V95: 100%${\rightarrow}$87.2%) and overdosing to a critical normal organ (Spinal cord V45: <0.1%${\rightarrow}$12.6%). Conclusion: In both brain and head and neck radiotherapy, a relatively larger set-up error was detected at the dens than the nasal septum when using an electronic portal imaging device. Consideration of the location error of the dens is necessary at the time of the precise radiation beam delivery in two-dimensional verification systems.