DOI QR코드

DOI QR Code

전립선 암의 방사선치료 시 직장 내 풍선삽입에 따른 계획표적부피마진

PTV Margins for Prostate Treatments with an Endorectal Balloon

  • 김희정 (서울대학교 대학원 방사선응용생명과학 협동과정) ;
  • 정진범 (분당서울대학교병원 방사선종양학과) ;
  • 하성환 (서울대학교 의과대학 의학연구원 방사선의학연구소) ;
  • 김재성 (분당서울대학교병원 방사선종양학과) ;
  • 예성준 (서울대학교 의과대학 의학연구원 방사선의학연구소)
  • Kim, Hee-Jung (Department of Radiation Applying Life Science, Seoul National University Graduate School) ;
  • Chung, Jin-Beom (Department of Radiation Oncology, Seoul National University Bundang Hospital) ;
  • Ha, Sung-Whan (Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine) ;
  • Kim, Jae-Sun (Department of Radiation Oncology, Seoul National University Bundang Hospital) ;
  • Ye, Sung-Joon (Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine)
  • 투고 : 2010.01.07
  • 심사 : 2010.08.03
  • 발행 : 2010.09.30

초록

목 적: 직장 내 풍선삽입을 하는 전립선 암 환자의 3차원 입체조형방사선치료(3D CRT)와 세기조절치료에 대한 적절한 계획표적부피 마진을 구하기 위하여 본 연구를 수행하였다. 대상 및 방법: 환자는 반듯이 누운 자세에서 치료계획용 CT 촬영과 매 치료 전에 환자의 직장에 풍선이 삽입되었고 70 mL의 공기로 풍선을 팽창시켰다. Anterior-posterior (AP)와 측면에서의 전자식 조사문영상 이미지와 디지털 화재구성사진을 이용하여 치료간 환자 치료위치 및 풍선의 위치 변화를 분석하였다. 두 이미지를 정합하기 위하여 Visual $C^{++}$ 기반의 프로그램을 개발하여 사용하였다. 기존의 방법을 기반으로 풍선에 의한 선량 흐려짐 효과를 고려한 계획표적부피 마진을 구하는 방법 고안하였다. 결 과: 환자치료위치의 치료간 변화는 모든 방향에서 평균 1 mm 이내로 나타났다. 풍선의 치료간 변화는 left-right (LR) 방향에 비해 superior-inferior (SI)와 AP 방향으로 크게 나타났다. 풍선의 무작위오차를 포함시켜 새로 고안된 1차원 계획표적부피 마진 구하는 방법을 사용하여 마진을 구한 결과, 3D CRT의 경우에는 LR 방향으로 3.0 mm, SI 방향으로 8.2 mm, AP 방향으로 8.5 mm로 계산되었다. Intensity modulated radiation therapy의 경우, LR 방향으로 4.1 mm, SI 방향으로 7.9 mm, AP 방향으로 10.3 mm로 마진이 계산되었다. 결 론: 풍선의 무작위오차는 전립선 모양의 변형을 일으켜서 선량분포에 영향을 준다. 따라서, 새로 고안된 계획표적부피 마진을 구하는 방법에는 풍선에 의한 선량 흐려짐 효과가 고려되었다. 이 방법은 풍선의 무작위오차만 계산에 포함하기 때문에 풍선의 계통오차에 대한 보정을 전제로 한다.

Purpose: To determine the appropriate prostate planning target volume (PTV) margins for 3-dimensitional (3D) conformal radiotherapy (CRT) and intensity-modulated radiation therapy (IMRT) patients treated with an endorectal balloon (ERB) under our institutional treatment condition. Materials and Methods: Patients were treated in the supine position. An ERB was inserted into the rectum with 70 cc air prior to planning a CT scan and then each treatment fraction. Electronic portal images (EPIs) and digital reconstructed radiographs (DRR) of planning CT images were used to evaluate inter-fractional patient's setup and ERB errors. To register both image sets, we developed an in-house program written in visual $C^{++}$. A new method to determine prostate PTV margins with an ERB was developed by using the common method. Results: The mean value of patient setup errors was within 1 mm in all directions. The ERB inter-fractional errors in the superior-inferior (SI) and anterior-posterior (AP) directions were larger than in the left-right (LR) direction. The calculated 1D symmetric PTV margins were 3.0 mm, 8.2 mm, and 8.5 mm for 3D CRT and 4.1 mm, 7.9 mm, and 10.3 mm for IMRT in LR, SI, and AP, respectively according to the new method including ERB random errors. Conclusion: The ERB random error contributes to the deformation of the prostate, which affects the original treatment planning. Thus, a new PTV margin method includes dose blurring effects of ERB. The correction of ERB systematic error is a prerequisite since the new method only accounts for ERB random error.

키워드

참고문헌

  1. Wang CW, Chong FC, Lai MK, Pu YS, Wu JK, Cheng JC. Set-up errors due to endorectal balloon positioning in intensity modulated radiation therapy for prostate cancer. Radiother Oncol 2007;84:177-184 https://doi.org/10.1016/j.radonc.2007.06.009
  2. Memorial Sloan-Kettering Cancer Center. A practical guide to intensity-modulated radiation therapy. Madison: Medical Physics Publishing Corporation, 2003
  3. Bortfeld T, Schmidt-Ullrich R, De Neve W, Wazer DE. Image-Guided IMRT. Berlin: Springer-Verlag, 2006
  4. Boersma LJ, van den Brink M, Bruce AM, et al. Estimation of the incidence of late bladder and rectum complications after high-dose (70-78 GY) conformal radiotherapy for prostate cancer, using dose-volume histograms. Int J Radiat Oncol Biol Phys 1998;41:83-92 https://doi.org/10.1016/S0360-3016(98)00037-6
  5. Jackson A, Skwarchuk MW, Zelefsky MJ, et al. Late rectal bleeding after conformal radiotherapy of prostate cancer:II. Volume effects and dose-volume histograms. Int J Radiat Oncol Biol Phys 2001;49:685-698 https://doi.org/10.1016/S0360-3016(00)01414-0
  6. Vargas C, Martinez A, Kestin LL, et al. Dose-volume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy. Int J Radiat Oncol Biol Phys 2005;62:1297-1308 https://doi.org/10.1016/j.ijrobp.2004.12.052
  7. Peeters ST, Lebesque JV, Heemsbergen WD, et al. Localized volume effects for late rectal and anal toxicity after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2006;64:1151-1161 https://doi.org/10.1016/j.ijrobp.2005.10.002
  8. Sripadam R, Stratford J, Henry AM, Jackson A, Moore CJ, Price P. Rectal motion can reduce CTV coverage and increase rectal dose during prostate radiotherapy: a daily cone-beam CT study. Radiother Oncol 2009;90:312-317 https://doi.org/10.1016/j.radonc.2008.07.031
  9. Orton NP, Tome WA. The impact of daily shifts on prostate IMRT dose distributions. Med Phys 2004;31:2845-2848 https://doi.org/10.1118/1.1784592
  10. McGary JE, Teh BS, Butler EB, Grant W 3rd. Prostate immobilization using a rectal balloon. J Appl Clin Med Phys 2002;3:6-11 https://doi.org/10.1120/1.1421749
  11. D'Amico AV, Manola J, Loffredo M, et al. A practical method to achieve prostate gland immobilization and target verification for daily treatment. Int J Radiat Oncol Biol Phys 2001;51:1431-1436 https://doi.org/10.1016/S0360-3016(01)02663-3
  12. Teh BS, Mai WY, Uhl BM, et al. Intensity-modulated radiation therapy (IMRT) for prostate cancer with the use of a rectal balloon for prostate immobilization: acute toxicity and dose-volume analysis. Int J Radiat Oncol Biol Phys 2001;49: 705-712 https://doi.org/10.1016/S0360-3016(00)01428-0
  13. Teh BS, McGary JE, Dong L, et al. The use of rectal balloon during the delivery of intensity modulated radiotherapy (IMRT) for prostate cancer: more than just a prostate gland immobilization device? Cancer J 2002;8:476-483 https://doi.org/10.1097/00130404-200211000-00012
  14. Wachter S, Gerstner N, Dorner D, et al. The influence of a rectal balloon tube as internal immobilization device on variations of volumes and dose-volume histograms during treatment course of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2002;52:91-100 https://doi.org/10.1016/S0360-3016(01)01821-1
  15. Patel RR, Orton N, Tome WA, Chappell R, Ritter MA. Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer. Radiother Oncol 2003;67:285-294 https://doi.org/10.1016/S0167-8140(03)00056-2
  16. van Lin EN, van der Vight LP, Witjes JA, Huisman HJ, Leer JW, Visser AG. The effect of an endorectal balloon and off-line correction on the interfraction systematic and random prostate position variations: a comparative study. Int J Radiat Oncol Biol Phys 2005;61:278-288 https://doi.org/10.1016/j.ijrobp.2004.09.042
  17. Fortney JA, Watkins JM, Marshall DT. Intrafractional prostatic fossa motion in biochemically relapsed prostate cancer using a rectal balloon. Int J Radiat Oncol Biol Phys 2008;72:S563-S564
  18. Heijmink SW, Scheenen TW, van Lin EN, et al. Changes in prostate shape and volume and their implications for radiotherapy after introduction of endorectal balloon as determined by MRI at 3T. Int J Radiat Oncol Biol Phys 2009;73:1446-1453 https://doi.org/10.1016/j.ijrobp.2008.06.1491
  19. van Herk M, Remeijer P, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 2000;47:1121-1135 https://doi.org/10.1016/S0360-3016(00)00518-6
  20. Deasy JO, Blanco AI, Clark VH. CERR: a computational environment for radiotherapy research. Med Phys 2003;30:979-985 https://doi.org/10.1118/1.1568978
  21. Remeijer P, van Herk M. Imaging for IMRT. In: Bortfeld T, Schmidt-Ullrich R, De Neve W, Wazer DE, eds. Image-Guided IMRT. Berlin: Springer-Verlag, 2006
  22. International Commission on Radiation Units and Measurements. ICRU report 62: prescribing, recording, and reporting photon beam therapy (supplement to ICRU report 50). Bethesda: International Commission on Radiation Units and Measurements, 1999
  23. Stroom JC, Heijmen BJ. Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol 2002;64:75-83 https://doi.org/10.1016/S0167-8140(02)00140-8
  24. Canning CA, Garzotto M, Hung AY. Daily verification of prostate motion both with and without a rectal balloon (RB) over the course of treatment. Int J Radiat Oncol Biol Phys 2005;63(Suppl 1):336
  25. Mao H, Hu X, Heberlein K, Smith R, Torres W. Prostate MRI and MRS at 3T: using phased surface coil array. Proc Intl Soc Mag Reson Med 2004;11:942
  26. Zapotoczna A, Sasso G, Simpson J, Roach M 3rd. Current role and future perspectives of magnetic resonance spectroscopy in radiation oncology for prostate cancer. Neoplasia 2007;9:455-463 https://doi.org/10.1593/neo.07277
  27. Kupelian PA, Langen KM, Zeidan OA, et al. Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2006;66:876-882 https://doi.org/10.1016/j.ijrobp.2006.06.011
  28. McKenzie A, van Herk M, Mijnheer B. Margins for geometric uncertainty around organs at risk in radiotherapy. Radiother Oncol 2002;62:299-307 https://doi.org/10.1016/S0167-8140(02)00015-4