• Title/Summary/Keyword: 3차원 입체조형방사선치료

Search Result 67, Processing Time 0.04 seconds

The Usability Analysis of 3D-CRT, IMRT, Tomotherpy Radiation Therapy on Nasopharyngeal Cancer (NPC의 방사선치료시 3D-CRT, IMRT, Tomotherapy의 유용성 분석)

  • Song, Jong-Nam;Kim, Young-Jae;Hong, Seung-Il
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.365-371
    • /
    • 2012
  • The radiation therapy treatment technique is developed from 3D-CRT, IMRT to Tomotherapy. and these three technique was most widely using methods. We find out a comparison normal tissue doses and tumor dose of 3D-CRT, IMRT(Linac Based), and Tomotherapy on Head and Neck Cancer. We achieved radiological image used the Human model phantom (Anthropomorphic Phantom) and it was taken CT simulation (Slice Thickness : 3mm) and GTV was nasopharngeal region and PTV(including set-up margin) was GTV plus 2mm area. and transfer those images to the radiation planning system (3D-CRT - ADAC-Pinnacle3, Tomotherapy - Tomotherapy Hi-Art System). The prescription dose was 7020 cGy and measuring PTV's dose and nomal tissue (parotid gland, oral cavity, spinal cord). The PTV's doses was Tomotherapy, Linac Based - IMRT, 3D-CRT was 6923 cGy, 6901 cGy and 6718 cGy its dose value was meet TCP because its value was up to the 95% based on 7020 cGy, Nomal tissue (parotid gland, oral cavity, spinal cord) was 1966 cGy(Tomotherapy), 2405 cGy(IMRT), 2468 cGy(3D-CRT)[parotid gland], 2991 cGy(Tomotherapy), 3062 cGy(IMRT), 3684 cGy (3D-CRT)[oral cavity], 1768 cGy(Tomotherapy), 2151 cGy(IMRT), 4031 cGy(3D-CRT)[spinal cord] its value did not exceeded NTCP. All the treatment techniques are equated with tumor and nomal tissue doses. The 3D-CRT was worse than other techniques on dose distribution, but it is reasonable in terms of TCP and NTCP baseline Tomotherapy, IMRT -dose distribution was relatively superior- was hard to therapy to claustrophobic patients and patients with respiratory failure. Particularly, in case on Tomotherapy, it take MVCT before treatment so dose measurement will be unnecessary radiation exposure to patients. Conclusion, Tomotherapy was the best treatment technique and 2nd was IMRT, and 3rd 3D-CRT. But applicable differently depending on the the patient's condition even though dose not matter.

PTV Margins for Prostate Treatments with an Endorectal Balloon (전립선 암의 방사선치료 시 직장 내 풍선삽입에 따른 계획표적부피마진)

  • Kim, Hee-Jung;Chung, Jin-Beom;Ha, Sung-Whan;Kim, Jae-Sun;Ye, Sung-Joon
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.166-176
    • /
    • 2010
  • Purpose: To determine the appropriate prostate planning target volume (PTV) margins for 3-dimensitional (3D) conformal radiotherapy (CRT) and intensity-modulated radiation therapy (IMRT) patients treated with an endorectal balloon (ERB) under our institutional treatment condition. Materials and Methods: Patients were treated in the supine position. An ERB was inserted into the rectum with 70 cc air prior to planning a CT scan and then each treatment fraction. Electronic portal images (EPIs) and digital reconstructed radiographs (DRR) of planning CT images were used to evaluate inter-fractional patient's setup and ERB errors. To register both image sets, we developed an in-house program written in visual $C^{++}$. A new method to determine prostate PTV margins with an ERB was developed by using the common method. Results: The mean value of patient setup errors was within 1 mm in all directions. The ERB inter-fractional errors in the superior-inferior (SI) and anterior-posterior (AP) directions were larger than in the left-right (LR) direction. The calculated 1D symmetric PTV margins were 3.0 mm, 8.2 mm, and 8.5 mm for 3D CRT and 4.1 mm, 7.9 mm, and 10.3 mm for IMRT in LR, SI, and AP, respectively according to the new method including ERB random errors. Conclusion: The ERB random error contributes to the deformation of the prostate, which affects the original treatment planning. Thus, a new PTV margin method includes dose blurring effects of ERB. The correction of ERB systematic error is a prerequisite since the new method only accounts for ERB random error.

The Evaluation of Composite Dose using Deformable Image Registration in Adaptive Radiotherapy for Head and Neck Cancer (두경부 종양의 적응방사선치료시 변형영상정합을 이용한 합성선량 평가)

  • Hwang, Chul-Hwan;Ko, Seong-Jin;Kim, Chang-Soo;Kim, Jung-Hoon;Kim, Dong-Hyun;Choi, Seok-Yoon;Ye, Soo-Young;Kang, Se-Sik
    • Journal of radiological science and technology
    • /
    • v.36 no.3
    • /
    • pp.227-235
    • /
    • 2013
  • In adaptive radiotherapy(ART), generated composite dose of surrounding normal tissue on overall treatment course which is using deformable image registration from multistage images. Also, compared with doses summed by each treatment plan and clinical significance is considered. From the first of May, 2011 to the last of July, 2012. Patients who were given treatment and had the head and neck cancer with 3-dimension conformal radiotherapy or intensity modulated radiotherapy, those who were carried out adaptive radiotherapy cause of tumor shrinkage and weight loss. Generated composite dose of surrounding normal tissue using deformable image registration was been possible, statistically significant difference was showed to mandible($48.95{\pm}3.89$ vs $49.10{\pm}3.55$ Gy), oral cavity($36.93{\pm}4.03$ vs $38.97{\pm}5.08$ Gy), parotid gland($35.71{\pm}6.22$ vs $36.12{\pm}6.70$ Gy) and temporomandibular joint($18.41{\pm}9.60$ vs $20.13{\pm}10.42$ Gy) compared with doses summed by each treatment plan. The results of this study show significant difference between composite dose by deformable image registration and doses summed by each treatment plan, composite dose by deformable image registration may generate more exact evaluation to surrounding normal tissue in adaptive radiotherapy.

A Study on lung dose of Intensity modulated and volumetric modulated arc therapy plans using restricted angle of Non-small cell lung cancer (비소세포 폐암의 제한된 각도를 이용한 세기변조와 용적변조회전 방사선치료계획의 폐 선량에 관한 연구)

  • Yeom, Misuk;Lee, Woosuk;Kim, Daesup;Back, Geummun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Purpose : For non-small cell lung cancer, if the treatment volume is large or the total lung volume is small, and the tumor is located in midline of patient's body, total lung dose tends to increase due to tolerance dose of spinal cord. The purpose of this study is to compare and evaluate the total lung dose of three dimensional conformal radiotherapy(3D CRT), intensity modulated radiotherapy(IMRT) and volumetric modulated arc therapy(VMAT) using restricted angle for non-small cell lung cancer patients. Materials and Methods : The treatment plans for four patients, being treated on TrueBeam STx($Varian^{TM}$, USA) with 10 MV and prescribed dose of 60 Gy in 30 fractions, 3D CRT, restricted angle IMRT and VAMT radiotherapy plans were established. Planning target volume(PTV), dose to total lung and spinal cord were evaluated using the dose volume histogram(DVH). Conformity index(CI), homogeneity index(HI), Paddick's index(PCI) for the PTV, $V_{30}$, $V_{20}$, $V_{10}$, $V_5$, mean dose for total lung and maximum dose for spinal cord was assessed. Results : Average value of CI, HI and PCI for PTV was $0.944{\pm}0.009$, $1.106{\pm}0.027$, $1.084{\pm}0.016$ respectively. $V_{20}$ values from 3D CRT, IMRT and VMAT plans were 30.7%, 20.2% and 21.2% for the first patient, 33.0%, 29.2% and 31.5% for second patient, 51.3%, 34.3% and 36.9% for third patient, finally 56.9%, 33.7% and 40.0% for the last patient. It was noticed that the $V_{20}$ was lowest in the IMRT plan using restricted angle. Maximum dose for spinal cord was evaluated to lower than the tolerance dose. Conclusion : For non-small cell lung cancer, IMRT with restricted angle or VMAT could minimize the lung dose and lower the dose to spinal cord below the tolerance level. Considering PTV coverage and tolerance dose to spinal cord, it was possible to obtain IMRT plan with smaller angle and this could result in lower dose to lung when compared to VMAT.

The Use of Normal Tissue Complication Probability to Predict Radiation Hepatitis (간암의 정상조직손상확률을 이용한 방사선간염의 발생여부 예측가능성에 관한 연구)

  • Keum Ki Chang;Seong Jinsil;Suh Chang Ok;Lee Sang-wook;Chung Eun Ji;Shin Hyun Soo;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.277-282
    • /
    • 2000
  • Purpose : Though It has been known that the to tolerance of the liver to external beam irradiation depends on the irradiated volume and dose, few data exist which Quantify this dependence. However, recently, with the development of three dimensional (3-D) treatment planning, have the tools to Quantify the relationships between dose, volume, and normal tissue complications become available. The objective of this study is to investigate the relationships between normal tissue complication probabili쇼 (WCP) and the risk of radiation hepatitis for patients who received variant dose partial liver irradiation. Materials and Methods : From March 1992 to December 1994, 10 patients with hepatoma and 10 patients with bile duct cancer were included in this study. Eighteen patients had normal hepatic function, but 2 patients (prothrombin time 73$\%$, 68$\%$) had mild liver cirrhosis before irradiation. Radiation therapy was delivered with 10MV linear accelerator, 180$\~$200 cGy fraction per day. The total dose ranged from 3,960 cGy to 6,000 cGy (median dose 5,040 cGy). The normal tissue complication probability was calculated by using Lyman's model. Radiation hepatitis was defined as the development of anicteric elevation of alkaline phosphatase of at least two fold and non-malignant ascites in the absence of documented progressive. Results: The calculated NTCP ranged from 0.001 to 0.840 (median 0.05). Three of the 20 patients developed radiation hepatitis. The NTCP of the patients with radiation hepatitis were 0.390, 0.528, 0.844(median : 0.58$\pm$0.23), but that of the patients without radiation hepatitis ranged fro 0.001 to 0.308 (median .0.09$\pm$0.09). When the NTCP was calculated by using the volume factor of 0.32, a radiation hepatitis was observed only in patients with the NTCP value more than 0.39. By contrast, clinical results of evolving radiation hepatitis were not well correlated with NTCP value calculated when the volume factor of 0.69 was applied. On the basis of these observations, the volume factor of 0.32 was more correlated to predict a radiation hepatitis. Conclusion : The risk of radiation hepatitis was increased above the cut-off value. Therefore the NTCP seems to be used for predicting the radiation hepatitis.

  • PDF

Analysis of the Radiation Therapy Outcomes and Prognostic Factors of Thymoma (흉선종에 대한 방사선치료 성적 및 예후인자분석)

  • Lee, Seok-Ho;Lee, Kyu-Chan;Choi, Jin-Ho;Lee, Jae-Ik;Sym, Sun-Jin;Cho, Eun-Kyung
    • Radiation Oncology Journal
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Purpose: This retrospective study was performed to evaluate the efficacy of radiation therapy (RT) and to investigate the prognostic factors for thymoma when treated with RT. Materials and Methods: We analyzed 21 patients with thymoma and also received RT from March 2002 to January 2008. The median follow-up time was 37 months (range, 3 to 89 months). The median patient age was 57 years (range, 24 to 77 years) and the gender ratio of males to females was 4:3. Of the 21 patients, complete resections (trans-sternal thymectomy) and R2 resections were performed in 14 and 1 patient, respectively. A biopsy was performed in 6 patients (28.7%). The WHO cell types in the 21 patients were as follows: 1 patient (4.8%) had type A, 10 patients (47.6%) had type B1-3, and 10 patients (47.6%) had type C. Based on Masaoka staging, 10 patients (47.6%) were stage II, 7 patients (33.3%) were stage III, and 4 patients (19.1%) were stage IVa. Three-dimensional RT was adminstered to the tumor volume (planned target volume), including the anterior mediastinum and the residual disease. The total RT dose ranged from 52.0 to 70.2 Gy (median dose, 54 Gy). Consistent with the WHO criteria, the response rate was only analyzed for the 6 patients who received a biopsy only. The prognostic factors analyzed for an estimate of survival included age, gender, tumor size, tumor pathology, Masaoka stage, the possibility of treatment by performing surgery, the presence of myasthenia gravis, and RT dose. Results: The 3-year overall survival rate (OS) and the progression free survival rate (PFS) were 80.7% and 78.2%, respectively. Among the 10 patients with WHO cell type C, 3 of 4 patients (75%) who underwent a complete resection and 3 of 6 patients (50%) who underwent a biopsy survived. Distant metastasis developed in 4 patients (19.1%). The overall response rate in the 6 patients who received biopsy only were as follows: partial remission in 4 patients (66.7%), stable disease in 1 patient (16.6%), and progressive disease in 1 patient (16.6%). Acute RTOG radiation pneumonitis occurred in 1 patient (4.8%), grade 2 occurred in 2 patients (9.5%), grade 3 occurred in 1 patient (4.8%), and grade 4 occurred in 1 patient (4.8%). A univariate analysis revealed that the significant prognostic factors for OS were age (${\geq}60$, 58.3%; <60, 100%; p=0.0194), pathology (WHO cell type A-B3, 100%; C, 58.3%; p=0.0194) and, whether the patient underwent surgery (yes, 93.3%; no, 50%; p=0.0096). Conclusion: For the 15 patients who received surgery, there was no local failure within the radiation field. In patients with WHO cell type C, surgical procedures could have resulted in a more favorable outcome than biopsy alone. We report here our clinical experience in 21 patients with thymoma who were treated by radiation therapy.

Development of Model Plans in Three Dimensional Conformal Radiotherapy for Brain Tumors (뇌종양 환자의 3차원 입체조형 치료를 위한 뇌내 주요 부위의 모델치료계획의 개발)

  • Pyo Hongryull;Lee Sanghoon;Kim GwiEon;Keum Kichang;Chang Sekyung;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • Purpose : Three dimensional conformal radiotherapy planning is being used widely for the treatment of patients with brain tumor. However, it takes much time to develop an optimal treatment plan, therefore, it is difficult to apply this technique to all patients. To increase the efficiency of this technique, we need to develop standard radiotherapy plant for each site of the brain. Therefore we developed several 3 dimensional conformal radiotherapy plans (3D plans) for tumors at each site of brain, compared them with each other, and with 2 dimensional radiotherapy plans. Finally model plans for each site of the brain were decide. Materials and Methods : Imaginary tumors, with sizes commonly observed in the clinic, were designed for each site of the brain and drawn on CT images. The planning target volumes (PTVs) were as follows; temporal $tumor-5.7\times8.2\times7.6\;cm$, suprasellar $tumor-3\times4\times4.1\;cm$, thalamic $tumor-3.1\times5.9\times3.7\;cm$, frontoparietal $tumor-5.5\times7\times5.5\;cm$, and occipitoparietal $tumor-5\times5.5\times5\;cm$. Plans using paralled opposed 2 portals and/or 3 portals including fronto-vertex and 2 lateral fields were developed manually as the conventional 2D plans, and 3D noncoplanar conformal plans were developed using beam's eye view and the automatic block drawing tool. Total tumor dose was 54 Gy for a suprasellar tumor, 59.4 Gy and 72 Gy for the other tumors. All dose plans (including 2D plans) were calculated using 3D plan software. Developed plans were compared with each other using dose-volume histograms (DVH), normal tissue complication probabilities (NTCP) and variable dose statistic values (minimum, maximum and mean dose, D5, V83, V85 and V95). Finally a best radiotherapy plan for each site of brain was selected. Results : 1) Temporal tumor; NTCPs and DVHs of the normal tissue of all 3D plans were superior to 2D plans and this trend was more definite when total dose was escalated to 72 Gy (NTCPs of normal brain 2D $plans:27\%,\;8\%\rightarrow\;3D\;plans:1\%,\;1\%$). Various dose statistic values did not show any consistent trend. A 3D plan using 3 noncoplanar portals was selected as a model radiotherapy plan. 2) Suprasellar tumor; NTCPs of all 3D plans and 2D plans did not show significant difference because the total dose of this tumor was only 54 Gy. DVHs of normal brain and brainstem were significantly different for different plans. D5, V85, V95 and mean values showed some consistent trend that was compatible with DVH. All 3D plans were superior to 2D plans even when 3 portals (fronto-vertex and 2 lateral fields) were used for 2D plans. A 3D plan using 7 portals was worse than plans using fewer portals. A 3D plan using 5 noncoplanar portals was selected as a model plan. 3) Thalamic tumor; NTCPs of all 3D plans were lower than the 2D plans when the total dose was elevated to 72 Gy. DVHs of normal tissues showed similar results. V83, V85, V95 showed some consistent differences between plans but not between 3D plans. 3D plans using 5 noncoplanar portals were selected as a model plan. 4) Parietal (fronto- and occipito-) tumors; all NTCPs of the normal brain in 3D plans were lower than in 2D plans. DVH also showed the same results. V83, V85, V95 showed consistent trends with NTCP and DVH. 3D plans using 5 portals for frontoparietal tumor and 6 portals for occipitoparietal tumor were selected as model plans. Conclusion : NTCP and DVH showed reasonable differences between plans and were through to be useful for comparing plans. All 3D plans were superior to 2D plans. Best 3D plans were selected for tumors in each site of brain using NTCP, DVH and finally by the planner's decision.

Bladder Preserving Treatment in Patients with Muscle Invasive Bladder Cancer (근침윤성 방광암 환자의 방광 보존적 치료 결과)

  • Yu, Jeong-Il;Oh, Dong-Ryol;Huh, Seung-Jae;Choi, Han-Yong;Lee, Hyon-Moo;Jeon, Seong-Soo;Yim, Ho-Young;Kim, Won-Suk;Lim, Do-Hoon;Ahn, Yong-Chan;Park, Won
    • Radiation Oncology Journal
    • /
    • v.25 no.2
    • /
    • pp.70-78
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: This study analyzed the tumor response, overall survival, progression free survival and related prognostic factors in patients with muscle invasive bladder cancer subjected to bladder preserving treatment. $\underline{Materials\;and\;Methods}$: Between August 1995 and June 2004, 37 patients with muscle invasive (transitional cell carcinoma, clinically stage T2-4) bladder cancer were enrolled for the treatment protocol of bladder preservation. There were 33 males and 4 females, and the median age was 67 years (range $38{\sim}86\;years$). Transurethral resection of the bladder (TURB) was performed in 17 patients who underwent complete resection. The median radiation dose administered was 64.8 Gy (range $55.8{\sim}67\;Gy$). The survival rate was calculated by the Kaplan-Meier method. $\underline{Results}$: An evaluation of the response rate was determined by abdomen-pelvic CT and cystoscopy at three months after radiotherapy. A complete response was seen in 17 patients (46%). The survival rate at three years was 54.7%, with 54 months of median survival (range $3{\sim}91$ months). During the study, 17 patients died and 13 patients had died from bladder cancer. The progression free survival rate at three years was 37.2%. There were 24 patients (64.9%) who had disease recurrence: 16 patients (43.2%) had local recurrence, 6 patients (16.2%) had a distant recurrence, and 2 patients (5.4%) had both a local and distant recurrence. The survival rate (p=0.0009) and progression free survival rates (p=0.001) were statistically significant when compared to the response rate after radiotherapy. $\underline{Conclusion}$: The availability of complete TURB and appropriate chemoradiotherapy were important predictors for bladder preservation and survival.

Application of SP Monitoring in the Pohang Geothermal Field (포항 지열 개발지역에서의 SP 장기 관측)

  • Lim Seong Keun;Lee Tae Jong;Song Yoonho;Song Sung-Ho;Yasukawa Kasumi;Cho Byong Wook;Song Young Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.164-173
    • /
    • 2004
  • To delineate geothermal water movement at the Pohang geothermal development site, Self-Potential (SP) survey and monitoring were carried out during pumping tests. Before drilling, background SP data have been gathered to figure out overall potential distribution of the site. The pumping test was performed in two separate periods: 24 hours in December 2003 and 72 hours in March 2004. SP monitoring started several days before the pumping tests with a 128-channel automatic recording system. The background SP survey showed a clear positive anomaly at the northern part of the boreholes, which may be interpreted as an up-flow Bone of the deep geothermal water due to electrokinetic potential generated by hydrothermal circulation. The first and second SP monitoring during the pumping tests performed to figure out the fluid flow in the geothermal reservoir but it was not easy to see clear variations of SP due to pumping and pumping stop. Since the area is covered by some 360 m-thick tertiary sediments with very low electrical resistivity (less than 10 ohm-m), the electrokinetic potential due to deep groundwater flow resulted in being seriously attenuated on the surface. However, when we compared the variation of SP with that of groundwater level and temperature of pumping water, we could identify some areas responsible to the pumping. Dominant SP changes are observed in the south-west part of the boreholes during both the preliminary and long-term pumping periods, where 3-D magnetotelluric survey showed low-resistivity anomaly at the depth of $600m\~1,000m$. Overall analysis suggests that there exist hydraulic connection through the southwestern part to the pumping well.

Evaluation of Setup Uncertainty on the CTV Dose and Setup Margin Using Monte Carlo Simulation (몬테칼로 전산모사를 이용한 셋업오차가 임상표적체적에 전달되는 선량과 셋업마진에 대하여 미치는 영향 평가)

  • Cho, Il-Sung;Kwark, Jung-Won;Cho, Byung-Chul;Kim, Jong-Hoon;Ahn, Seung-Do;Park, Sung-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.81-90
    • /
    • 2012
  • The effect of setup uncertainties on CTV dose and the correlation between setup uncertainties and setup margin were evaluated by Monte Carlo based numerical simulation. Patient specific information of IMRT treatment plan for rectal cancer designed on the VARIAN Eclipse planning system was utilized for the Monte Carlo simulation program including the planned dose distribution and tumor volume information of a rectal cancer patient. The simulation program was developed for the purpose of the study on Linux environment using open source packages, GNU C++ and ROOT data analysis framework. All misalignments of patient setup were assumed to follow the central limit theorem. Thus systematic and random errors were generated according to the gaussian statistics with a given standard deviation as simulation input parameter. After the setup error simulations, the change of dose in CTV volume was analyzed with the simulation result. In order to verify the conventional margin recipe, the correlation between setup error and setup margin was compared with the margin formula developed on three dimensional conformal radiation therapy. The simulation was performed total 2,000 times for each simulation input of systematic and random errors independently. The size of standard deviation for generating patient setup errors was changed from 1 mm to 10 mm with 1 mm step. In case for the systematic error the minimum dose on CTV $D_{min}^{stat{\cdot}}$ was decreased from 100.4 to 72.50% and the mean dose $\bar{D}_{syst{\cdot}}$ was decreased from 100.45% to 97.88%. However the standard deviation of dose distribution in CTV volume was increased from 0.02% to 3.33%. The effect of random error gave the same result of a reduction of mean and minimum dose to CTV volume. It was found that the minimum dose on CTV volume $D_{min}^{rand{\cdot}}$ was reduced from 100.45% to 94.80% and the mean dose to CTV $\bar{D}_{rand{\cdot}}$ was decreased from 100.46% to 97.87%. Like systematic error, the standard deviation of CTV dose ${\Delta}D_{rand}$ was increased from 0.01% to 0.63%. After calculating a size of margin for each systematic and random error the "population ratio" was introduced and applied to verify margin recipe. It was found that the conventional margin formula satisfy margin object on IMRT treatment for rectal cancer. It is considered that the developed Monte-carlo based simulation program might be useful to study for patient setup error and dose coverage in CTV volume due to variations of margin size and setup error.