• Title/Summary/Keyword: 3차원 스캐너 시스템

Search Result 92, Processing Time 0.027 seconds

3D Makeup Simulation using Realistic Facial Data (사실적인 얼굴 데이터를 이용한 3차원 메이크업 시뮬레이션)

  • Lee, Sang-Hoon;Kim, Hyeon-Joong;Choi, Soo-Mi
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.410-412
    • /
    • 2012
  • 메이크업 시뮬레이션은 입력 장치와 디스플레이를 사용하여 가상의 얼굴에 다양한 화장법을 시험해 볼 수 있는 도구이다. 최근 다양한 환경을 고려한 여러 메이크업 시뮬레이션이 개발되었지만, 대부분의 시스템은 2차원 영상에서 이루어지며 제한된 조건에서의 시뮬레이션 결과만 확인할 수 있다. 본 연구에서는 측정된 피부의 거칠기와 반사도를 적용하고 적용된 반사도를 조절할 수 있는 사실적인 메이크업 시스템을 개발하였다. 개발된 시뮬레이션 방법을 사용시 3차원 스캐너로 획득한 고해상도의 얼굴 데이터 상에서 측정된 반사도를 사용하여 빛을 고려한 메이크업을 시뮬레이션 할 수 있다. 정점 기반 형상표현을 사용하여 3차원 모델의 렌더링 과정을 간단하고 유연하게 표현하였으며, 반사도를 얼굴 부위에 따라 달리 적용하여 보다 사실적인 메이크업 시뮬레이션을 가능하게 하였다. 또한 사용자에게 반사도를 직접 조절 가능하게 함으로서 보다 사실적인 3차원 메이크업을 가능하게 하였다.

Development of the 3D Imaging System and Automatic Registration Algorithm for the Intelligent Excavation System (IES) (지능형 굴삭 시스템을 위한 모바일 3D 이미징 시스템 및 자동 정합 알고리즘의 개발)

  • Chae, Myung-Jin;Lee, Gyu-Won;Kim, Jung-Ryul;Park, Jae-Woo;Yoo, Hyun-Seok;Cho, Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.136-145
    • /
    • 2009
  • The objective of the Intelligent Excavation System (IES) is to recognize the work environment and produce work plan and automatically control the excavator through integrating sensor and robot technologies. This paper discusses one of the core technologies of IES development project, development of 3D work environment modeling. 3D laser scanner is used for 3-dimensional mathematical model that can be visualized in virtual space in 3D. This paper describes (1) how the most appropriate 3D imaging system has been chosen; (2) the development of user interface and customization of the s/w to control the scanner for IES project; (3) the development of the mobile station for the scanner; (4) and the algorithm for the automatic registration of laser scan segments for IES project. The development system has been tested on the construction field and lessons learned and future development requirements are suggested.

오피스용 및 산업용 디지털 3차원 실물복제기 요소기술 개발에 관한 연구

  • 김동수;이원희;김성종;이택민;김광영;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.303-303
    • /
    • 2004
  • 3차원 실물복제기(RODS)는 3차원 스캐닝, SFFS 및 네트워크 등의 복합기능이 내장된 장치로서 제품개발 및 사무자동화등 다양한 분야에 적용 가능한 장비이다. 또한, 기존의 각각 독립된 시스템인 3D스캐너와 SFFS를 하나의 시스템으로 구성함으로서 제작시간과 업무 효율을 높일 수 있는 차세대 시스템의 일종이다. 실물복제기는 산업용과 오피스용으로 구분되어 질 수 있으며, 본 연구에서 개발하고자 하는 다종 재료용 하이브리드형 SFFS는 다품종 소량생산 환경에 적합한 제품의 제작 방식으로서 기능성 부품을 직접 제작/검증 할 수 있다.(중략)

  • PDF

Review of recent developments for intra-oral scanners (현재 존재하는 구강 스캐너에 대한 고찰)

  • Choi, Jong-Hoon;Lim, Young-Jun;Lee, Won-Jin;Han, Jung-Suk;Lee, Seung-Pyo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.2
    • /
    • pp.112-125
    • /
    • 2015
  • Making a model that is an accurate replica of the oral structure requires precision and efficiency. Nowadays, rapid technological advances bring digitalization in dentistry. One of the most important works in digital dentistry is three-dimensional modeling of the oral cavity and digitizing the 3D data. Among the three components of CAD/CAM, (1) data capture component (digitizers), (2) design component (CAD software), (3) manufacturing component (CAM), the basic component that has a significant impact on the other processes is the data capture component, i.e. intra-oral scanners. This literature review discusses the principles and clinical use of intra-oral scanners in dentistry based on recent publications of the past 5 years using the PubMed and Google Scholar databases.

Object Detection From 3D Terrain Data Gener Ated by Laser Scanner of Intelligent Excavating System(IES) (굴삭 자동화를 위한 레이저 스캐너 기반의 3차원 객체 탐지 알고리즘의 개발)

  • Yoo, Hyun-Seok;Park, Ji-Woon;Choi, Youn-Nyung;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.130-141
    • /
    • 2011
  • The intelligent excavating system(IES), the development in South Korea of which has been underway since 2006, aims for the full-scale automation of the excavation process that includes a series of tasks such as movement, excavation and loading. The core elements to ensure the quality and safety of the automated excavation equipment include 3D modeling of terrain that surrounds the excavating robot and the technology for detecting objects accurately(i.e., for detecting the location of nearby loading trucks and humans as well as of obstacles positioned on the movement paths). Therefore the purpose of this research is to ensure the quality and safety of automated excavation detecting the objects surrounding the excavating robot via a 3D laser scanning system. In this paper, an algorithm for estimating the location, height, width, and shape of objects in the 3D-realized terrain that surrounds the location of the excavator was proposed. The performance of the algorithm was verified via tests in an actual earthwork field.

Realistic Skin Rendering for 3D Facial Makeup (3차원 얼굴 메이크업을 위한 사실적인 피부 렌더링)

  • Lee, Sang-Hoon;Kim, Hyeon-Joong;Choi, Soo-Mi
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.520-528
    • /
    • 2013
  • Makeup simulation is a tool that tests various makeup methods on a virtual digital face using input and display devices. Although several simulation systems supporting various makeup styles have been recently developed, most systems have many limitations on realistic skin representations because they use 2D facial images. We develope a realistic makeup simulation method which can control skin reflectance and roughness parameters. The method allows a user to simulate makeup applications while changing skin parameters using high-resolution facial data acquired by 3D scanners. Besides we use a point-based shape representation which enables simple and flexible 3D rendering, and provide a more realistic makeup simulation by applying different skin parameters on each part of the face.

Extraction and Implementation of MPEG-4 Facial Animation Parameter for Web Application (웹 응용을 위한 MPEC-4 얼굴 애니메이션 파라미터 추출 및 구현)

  • 박경숙;허영남;김응곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1310-1318
    • /
    • 2002
  • In this study, we developed a 3D facial modeler and animator that will not use the existing method by 3D scanner or camera. Without expensive image-input equipments, we can easily create 3D models only using front and side images. The system is available to animate 3D facial models as we connect to animation server on the WWW which is independent from specific platforms and softwares. It was implemented using Java 3D API. The facial modeler detects MPEG-4 FDP(Facial Definition Parameter) feature points from 2D input images, creates 3D facial model modifying generic facial model with the points. The animator animates and renders the 3D facial model according to MPEG-4 FAP(Facial Animation Parameter). This system can be used for generating an avatar on WWW.

A Three-Dimensional Facial Modeling and Prediction System (3차원 얼굴 모델링과 예측 시스템)

  • Gu, Bon-Gwan;Jeong, Cheol-Hui;Cho, Sun-Young;Lee, Myeong-Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • In this paper, we describe the development of a system for generating a 3-dimensional human face and predicting it's appearance as it ages over subsequent years using 3D scanned facial data and photo images. It is composed of 3-dimensional texture mapping functions, a facial definition parameter input tool, and 3-dimensional facial prediction algorithms. With the texture mapping functions, we can generate a new model of a given face at a specified age using a scanned facial model and photo images. The texture mapping is done using three photo images - a front and two side images of a face. The facial definition parameter input tool is a user interface necessary for texture mapping and used for matching facial feature points between photo images and a 3D scanned facial model in order to obtain material values in high resolution. We have calculated material values for future facial models and predicted future facial models in high resolution with a statistical analysis using 100 scanned facial models.

Web-based 3D Face Modeling System (웹기반 3차원 얼굴 모델링 시스템)

  • 김응곤;송승헌
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.427-433
    • /
    • 2001
  • This paper proposes a web-based 3 dimensional face modeling system that makes a realistic facial model efficiently without any 30 scanner or camera that uses in the traditional methods. Without expensive image-input equipments, we can easily create 3B models only using front and side images. The system is available to make 3D facial models as we connect to the facial modeling server on the WWW which is independent from specific platforms and softwares. This system will be implemented using Java 3D API, which includes the functions and conveniences of developed graphic libraries. It is a Client/server architecture which consists of user connection module and 3D facial model creating module. Clients connect with the facial modeling server, input two facial photographic images, detects the feature points, and then create a 3D facial model modifying generic facial model with the points according to the procedures using only the web browser.

  • PDF