• Title/Summary/Keyword: 3차원 선량평가

Search Result 132, Processing Time 0.026 seconds

Evaluation of the Patient Dose in Case of Standard Radiographic Examinations Using CR and DR (표준영상의학검사를 대상으로 한 CR과 DR에서의 환자선량평가)

  • Kim, Sang-Tae;Han, Beom-Hui
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.173-178
    • /
    • 2010
  • In projection radiography, two types of digital imaging systems are currently available, computed radiography (CR) and digital radiography (DR): a difference between them can be stated in terms of dose and image quality. In the Department of Radiology our hospital, a flat-panel DR equipment (Digital diagnost, Philips) and two CR systems (ADC Compact plus digitizer, AGFA) are employed. Eight standard radiographic examinations (Skull AP, Skull LAT, Chest PA, Chest LAT, Abdomen AP, L-spine AP, L-spine LAT, Pelvis AP) were considered: doses delivered to patients in terms of both entrance skin dose (ESD) were calculated and compared in order to study the dosimetric discrepancies between CR and DR. Assessment of image quality is undertaken by Consultant Radiologists to ensure that the quality criteria for diagnostic radiographic images of the European guidelines were met. Results showed that both ESD in DR are lower than that in CR; all images met the criteria in the European Guidelines for both modalities and were used for reporting by the radiologists. Since the operators are the same and the image quality is comparable in both modalities, this study shows that in the considered examinations, DR can perform better than CR from a dosimetric point of view.

Evaluation of Ovary Dose of Childbearing age Woman with Breast cancer in Radiation therapy (가임기 여성의 방사선 치료 시 난소 선량 평가)

  • Park, Sung Jun;Lee, Yeong Cheol;Kim, Seon Myeong;Kim, Young Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.145-153
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the ovarian dose during radiation therapy for breast cancer in women of childbearing age through an experiment. The ovarian dose is evaluated by comparing and analyzing between the calculated dose in the treatment planning system according to the treatment technique and the measured dose using a thermoluminescence dosimeter (TLD). The clinical usefulness of lead (Pb) apron is investigated through dose analysis according to whether or not it is used. Materials and Methods: Rando humanoid phantom was used for measurement, and wedge filter radiation therapy, 3D conformal radiation therapy, and intensity modulated radiation therapy were used as treatment techniques. A treatment plan was established so that 95% of the prescribed dose could be delivered to the right breast of the Rando humanoid phantom 3D image obtained using the CT simulator. TLD was inserted into the surface and depth of the virtual ovary of the Rando hunmanoid phantom and irradiated with radiation. The measurement location was the center of treatment and the point moved 2 cm to the opposite breast from the center of the Rando hunmanoid phantom, 5cm, 10cm, 12.5cm, 15cm, 17.5cm, 20cm from the boundary of the right breast to the center of treatment and downward, and the surface and depth of the right ovary. Measurements were made at a total of 9 central points. In the dose comparison of treatment planning systems, two wedge filter treatment techniques, three-dimensional conformal radiotherapy, and intensity-modulated radiation therapy were established and compared. Treatments were compared, and dose measurements according to the use of lead apron were compared and analyzed in intensity-modulated radiation therapy. The measured value was calculated by averaging three TLD values for each point and converting using the TLD calibration value, which was calculated as the point dose mean value. In order to compare the treatment plan value with the actual measured value, the absolute dose value was measured and compared at each point (%Diff). Results: At Point A, the center of treatment, a maximum of 201.7cGy was obtained in the treatment planning system, and a maximum of 200.6cGy was obtained in the TLD. In all treatment planning systems, 0cGy was calculated from Point G, which is a point 17.5cm downward from the breast interface. As a result of TLD, a maximum of 2.6cGy was obtained at Point G, and a maximum of 0.9cGy was obtained at Point J, which is the ovarian dose, and the absolute dose was 0.3%~1.3%. The difference in dose according to the use of lead aprons was from a maximum of 2.1cGy to a minimum of 0.1cGy, and the %Diff value was 0.1%~1.1%. Conclusion: In the treatment planning system, the difference in dose according to the three treatment plans did not show a significant difference from 0.85% to 2.45%. In the ovary, the difference between the Rando humanoid phantom's treatment planning system and the actual measured dose was within 0.9%, and the actual measured dose was slightly higher. This did not accurately reflect the effect of scattered radiation in the treatment planning system, and it is thought that the dose of scattered radiation and the dose taken by CBCT with TLD inserted were reflected in the actual measurement. In dosimetry according to the with or without a lead apron, when a lead apron was used, the closer the distance from the treatment range, the more effective the shielding was. Although it is not clinically appropriate for pregnancy or artificial insemination during radiotherapy, the dose irradiated to the ovaries during treatment is not expected to significantly affect the reproductive function of women of childbearing age after radiotherapy. However, since women of childbearing age have constant anxiety, it is thought that psychological stability can be promoted by presenting the data from this study.

Qualitative Evaluation of 2D Dosimetry System for Helical Tomotherapy (2차원 토모테라피 선량측정시스템의 정성적 평가)

  • Ma, Sun Young;Jeung, Tae Sig;Shim, Jang Bo;Lim, Sangwook
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.193-198
    • /
    • 2014
  • The purpose of this study is to see the feasibility of the newly developed 2D dosimetry system using phosphor screen for helical tomotherapy. The cylindrical water phantom was fabricated with phosphor screen to emit the visible light during irradiation. There are three types of virtual target, one is one spot target, another is C-shaped target, and the other is multiple targets. Each target was planned to be treated at 10 Gy by treatment planning system (TPS) of tomotherapy. The cylindrical phantom was placed on the tomotherapy table and irradiated as calculations of the TPS. Every frame which acquired by CCD camera was integrated and the doses were calculated in pixel by pixel. The dose distributions from the fluorescent images were compared with the calculated dose distribution from the TPS. The discrepancies were evaluated as gamma index for each treatment. The curve for dose rate versus pixel value was not saturated until 900 MU/min. The 2D dosimetry using the phosphor screen and the CCD camera is respected to be useful to verify the dose distribution of the tomotherapy if the linearity correction of the phosphor screen improved.

Study on the Photoneutrons Produced in 15 MV Medical Linear Accelerators : Comparison of Three-Dimensional Conformal Radiotherapy and Intensity-Modulated Radiotherapy (15 MV 의료용 선형가속기에서 발생되는 광중성자의 선량 평가 - 3차원입체조형방사선치료와 세기조절방사선치료의 비교 -)

  • Yang, Oh-Nam;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.335-343
    • /
    • 2012
  • Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photonueutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photonbeams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.

A dosimetric evaluation of volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy for the lower extremity soft tissue sarcoma (하지 연부조직육종을 위한 방사선치료기술 별 선량평가 연구)

  • Lee, SolMin;Song, Seongchan;Hyun, Sung Eun;Park, Heung Deuk;Lee, Jaegi;Kim, Young Suk;Kim, Gwi Eon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • A dosimetric evaluation of volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy for the lower extremity soft tissue sarcoma For the lower extremity soft tissue sarcoma, volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy were evaluated to compare these three treatment planning technique. The mean doses to the planning target volume and the femur were calculated to evaluate target coverage and the risk of bone fracture during radiation therapy. Volumetric modulated arc therapy can reduce the dose to the femur without compromising target coverage and reduce the treatment time compared with intensity modulated radiation therapy.

  • PDF

Imaging dose evaluations on Image Guided Radiation Therapy (영상유도방사선치료시 확인 영상의 흡수선량평가)

  • Hwang, Sun Boong;Kim, Ki Hwan;kim, il Hwan;Kim, Woong;Im, Hyeong Seo;Han, Su Chul;Kang, Jin Mook;Kim, Jinho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Purpose : Evaluating absorbed dose related to 2D and 3D imaging confirmation devices Materials and Methods : According to the radiographic projection conditions, absorbed doses are measured that 3 glass dosimeters attached to the centers of 0', 90', 180' and 270' in the head, thorax and abdomen each with Rando phantom are used in field size $26.6{\times}20$, $15{\times}15$. In the same way, absorbed doses are measured for width 16cm and 10cm of CBCT each. OBI(version 1.5) system and calibrated glass dosimeters are used for the measurement. Results : AP projection for 2D imaging check, In $0^{\circ}$ degree absorbed doses measured in the head were $1.44{\pm}0.26mGy$ with the field size $26.6{\times}20$, $1.17{\pm}0.02mGy$ with the field size $15{\times}15$. With the same method, absorbed doses in the thorax were $3.08{\pm}0.86mGy$ to $0.57{\pm}0.02mGy$ by reducing field size. In the abdomen, absorbed dose were reduced $8.19{\pm}0.54mGy$ to $4.19{\pm}0.09mGy$. Finally according to the field size, absorbed doses has decreased by average 5~12%. With Lateral projection, absorbed doses showed average 5~8% decrease. CBCT for 3D imaging check, CBDI in the head were $4.39{\pm}0.11mGy$ to $3.99{\pm}0.13mGy$ by reducing the width 16cm to 10cm. In the same way in thorax the absorbed dose were reduced $34.88{\pm}0.93(10.48{\pm}0.09)mGy$ to $31.01{\pm}0.3(9.30{\pm}0.09)mGy$ and $35.99{\pm}1.86mGy$ to $32.27{\pm}1.35mGy$ in the abdomen. With variation of width 16cm and 10cm, they showed 8~11% decrease. Conclusion : By means of reducing 2D field size, absorbed dose were decreased average 5~12% in 3D width size 8~11%. So that it is necessary for radiation therapists to recognize systematical management for absorbed dose for Imaging confirmation. and also for frequent CBCT, it is considered whether or not prescribed dose for RT refer to imaging dose.

  • PDF

3차원 그래픽 시뮬레이션 기술을 이용한 원자력 발전소 폐기물 처리 작업 중 동선에 따른 방사선 피폭 변화

  • 박원만;김윤혁;김경수;황주호
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.427-429
    • /
    • 2004
  • 본 연구에서는 국내 방사선 작업 종사자의 연간 피폭량 중 상당부분(30%)를 차지하는 원자력 발전소 작업 종사자의 방사선 피폭량을 3차원 그래픽 시뮬레이션 기술 및 Java 프로그래밍과 수치해석 방법을 이용하여, 보다 안전한 작업 계획 수립에 필요한 작업 동선에 따른 방사선 피폭변화에 대하여 연구하였다. 원자력 발전소의 방사성 폐기물 처리 시설에 대해 3차원 그래픽으로 모델링 작업을 수행하고, 가상공간에서 선원과 작업자와의 거리 및 시간에 따른 방사선 피폭량을 수치 해석적으로 계산하였다. 선원의 종류에 따른 특정감마선($\tau$상수)을 입력하여 가상 작업 시뮬레이션 동안의 피폭선량을 평가하였으며, 시간에 따른 가상 작업자의 위치와 이동거리, 방사선 피폭량 등의 결과데이터 파일을 이용하여 작업 결과를 분석하였다.

  • PDF

A Comparison between Three Dimensional Radiation Therapy and Intensity Modulated Radiation Therapy on Prostate Cancer (전립샘암의 방사선 치료 시 입체조형치료법와 세기조절방사선 치료법의 비교)

  • Kim, YoungJae;Lee, JaeSub;Hong, Seongill;Ko, HyeJin
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.409-414
    • /
    • 2013
  • In this study, we evaluated to the superiority of treatment techniques on prostate cancer, apply to each other treatment techniques-3D conformal therapy versus IMRT-using dose distribution and dose coverages. Obtained 10 patients CT simulation, divided tumor volume and critical organs. Prescription dose was 80 Gy on tumor volume and Each of plans was set by two different plans. As a result, Dose coverage was superior to IMRT. The IMRT's tumor absorbed dose(100.2%) was close to prescription doses. Normal tissue(bladder, rectal, bowel Lt Rt fumoral head) absorbed dose rate was superior. In other words, the radiation therapy of prostate cancer with intensity modulated radiation therapy was better than conformal radiation therapy on dose.

The dosimetric guide of treatment modalities for Left side breast irradiation after conservative surgery (좌측 유방암 방사선 치료 시 치료 기법에 따른 선량적 고찰)

  • Kim, Tae Min;Moon, Sung Kong;Kim, Li Zzy;Kim, Se Young;Park, Ryeung Hwang;Kim, Joo Ho;Cho, Jung Heui
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.153-160
    • /
    • 2018
  • Purpose : We retrospectively analyzed doses of each radiation therapy technique used in the treatment for left breast cancer patients after partial mastectomy through dose results for normalorgans and tumor volume to use this as a clinical reference for radiation therapy of domestic left breast cancer patients. Materials and Methods : 40 patients who underwent partial mastectomy on left breast cancer were classified in 3 treatment methods. The treatment plan was evaluated by HI(homogeneity index), $D_{95%}$, and CI(conformity index), and the $V_{hot}$ for gross tumor volume and clinical target volume of each treatment method. In Cyberknife treatment, tumor volume was the same as high dose volume in the other techniques, so no consideration was given to clinical target volume. Treatment plan evaluation for normal organs were evaluated by mean dose on ipsilateral lung, heart, left anterior descending artery, opposite breast and lung, and non-target tissue. Result : Treatment with volumetric arc radiotherapy(VMAT) showed $95.84{\pm}0.75%$ of $D_{95%}$ on the clinical target volume, significantly higher than that of 3D-CRT. The $D_{95%}$ value of the total tumor volume was slightly higher than the other treatments. In Cyberknife treatment, the dose to the normal organs was significantly lower than other treatments. Overall, the maximum dose and mean dose to the heart were $26.2{\pm}6.12Gy$ and $1.88{\pm}0.2Gy$ in VMAT treatment and $20.25{\pm}9.35Gy$ and $1.04{\pm}0.19Gy$ in 3D-CRT therapy, respectively. Conclusion : In comparison on 3D-CRT and VMAT, most of the dosimetric parameters for the evaluation of the treatment plan showed similar values, so that there is no significant difference in treatment plan evaluation. It is possible to select the treatment method according to the patient's anatomical structure or possibility of breath control. Cyberknife treatment is very useful treatment for normal organs because of its accurate dose exposure to the tumor volume However, it has restrictions to treat the local area, to have relatively long treatment time and to involve invasive procedure.

  • PDF

Estimation of Jaw and MLC Transmission Factor Obtained by the Auto-modeling Process in the Pinnacle3 Treatment Planning System (피나클치료계획시스템에서 자동모델화과정으로 얻은 Jaw와 다엽콜리메이터의 투과 계수 평가)

  • Hwang, Tae-Jin;Kang, Sei-Kwon;Cheong, Kwang-Ho;Park, So-Ah;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Radiation treatment techniques using photon beam such as three-dimensional conformal radiation therapy (3D-CRT) as well as intensity modulated radiotherapy treatment (IMRT) demand accurate dose calculation in order to increase target coverage and spare healthy tissue. Both jaw collimator and multi-leaf collimators (MLCs) for photon beams have been used to achieve such goals. In the Pinnacle3 treatment planning system (TPS), which we are using in our clinics, a set of model parameters like jaw collimator transmission factor (JTF) and MLC transmission factor (MLCTF) are determined from the measured data because it is using a model-based photon dose algorithm. However, model parameters obtained by this auto-modeling process can be different from those by direct measurement, which can have a dosimetric effect on the dose distribution. In this paper we estimated JTF and MLCTF obtained by the auto-modeling process in the Pinnacle3 TPS. At first, we obtained JTF and MLCTF by direct measurement, which were the ratio of the output at the reference depth under the closed jaw collimator (MLCs for MLCTF) to that at the same depth with the field size $10{\times}10\;cm^2$ in the water phantom. And then JTF and MLCTF were also obtained by auto-modeling process. And we evaluated the dose difference through phantom and patient study in the 3D-CRT plan. For direct measurement, JTF was 0.001966 for 6 MV and 0.002971 for 10 MV, and MLCTF was 0.01657 for 6 MV and 0.01925 for 10 MV. On the other hand, for auto-modeling process, JTF was 0.001983 for 6 MV and 0.010431 for 10 MV, and MLCTF was 0.00188 for 6 MV and 0.00453 for 10 MV. JTF and MLCTF by direct measurement were very different from those by auto-modeling process and even more reasonable considering each beam quality of 6 MV and 10 MV. These different parameters affect the dose in the low-dose region. Since the wrong estimation of JTF and MLCTF can lead some dosimetric error, comparison of direct measurement and auto-modeling of JTF and MLCTF would be helpful during the beam commissioning.

  • PDF