• Title/Summary/Keyword: 3차원스캐너

Search Result 304, Processing Time 0.028 seconds

A proposal of soft tissue landmarks for craniofacial analysis using three-dimensional laser scan imaging (3차원 레이저 스캔을 이용한 안면 연조직 분석을 위한 계측점의 제안)

  • Baik, Hyoung-Seon;Lee, Hwa-Jin;Jeon, Jai-Min
    • The korean journal of orthodontics
    • /
    • v.36 no.1 s.114
    • /
    • pp.1-13
    • /
    • 2006
  • Three-dimensional (3-D) laser scans can provide a 3-D image of the face and it is efficient in examining specific structures of the craniofacial soft tissues. Due to the increasing concerns with the soft tissues and expansion of the treatment range, a need for 3-D soft tissue analysis has become urgent. Therefore, the purpose of this study was to evaluate the scanning error of the Vivid 900 (Minolta, Tokyo, Japan) 3-D laser scanner and Rapidform program (Inus Technology Inc., Seoul, Korea) and to evaluate the mean error and the magnification percentage of the image obtained from 3-D laser scans. In addition, soft tissue landmarks that are easy to designate and reproduce in 3-D images of normal, Class II and Class III malocclusion patients were obtained. The conclusions are as follows; scanning errors of the Vivid 900 3-D laser scanner using a manikin were 0.16 mm in the X axis, 0.15 mm in the Y axis, and 0.15 mm in the Z axis. In the comparison of actual measurements from the manikin and the 3-D image obtained from the Rapidform program, the mean error was 0.37 mm and the magnification was 0.66%. Except for the right soft tissue gonion from the 3-D image, errors of all soft tissue landmarks were within 2.0 mm. Glabella, soft tissue nasion, endocanthion, exocanthion, pronasale, subnasale, nasal alare, upper lip point, cheilion, lower lip point, soft tissue B point, soft tissue pogonion, soft tissue menton and preaurale had especially small errors. Therefore, the Rapidform program can be considered a clinically efficient tool to produce and measure 3-D images. The soft tissue landmarks proposed above are mostly anatomically important points which are also easily reproducible. These landmarks can be beneficial in 3-D diagnosis and analysis.

Accurate Estimation of Settlement Profile Behind Excavation Using Conditional Merging Technique (조건부 합성 기법을 이용한 굴착 배면 침하량 분포의 정밀 산정)

  • Kim, Taesik;Jung, Young-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.8
    • /
    • pp.39-44
    • /
    • 2016
  • Ground deformation around construction site in urban area where typically adjacent structures are located needs to be strictly controlled. Accordingly, it is very important to precisely monitor the ground deformation. Settlement beacon is typically employed to measure the ground deformation, but meanwhile the rapid development in electronic technology enables 3D image scanner to become available for measuring the ground deformation profile in usual construction sites. With respect to the profile measurement, the 3D scanner has an advantage, whereas its accuracy is somewhat limited because it does not measure the displacement directly. In this paper, we developed a conditional merging technique to combine the ground displacement measured from settlement beacon and the profile measured by the 3D scanner. Synthetic ground deformation profile was generated to validate the proposed technique. It is found that the ground deformation measurement error can be reduced significantly via the conditional merging technique.

The Study on Recording Method for Buried Cultural Property Using Photo Scanning Technique (사진스캐닝 기술에 의한 매장문화재 기록방법에 대한 연구)

  • Koo, Ja-bong
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.835-847
    • /
    • 2015
  • Photo scanning can create point cloud and polygon models like 3D scanners bringing an object into the 3 dimensional world by combining several sheets of photographic information. The created data give us information about planes and sectional forms required for a 2 dimensional survey as well as 3 dimensional figures of buried cultural property. It requires a lot of time to record buried cultural property in the field, however, the photo scanning technique does not need additional equipment and manpower so the work may begin immediately while the property is protected. Moreover, it reduces financial burdens as it creates 3 dimensional data using images acquired by photography but provides the optimal condition to check 3 dimensional information quickly and easily.

Realistic Skin Rendering for 3D Facial Makeup (3차원 얼굴 메이크업을 위한 사실적인 피부 렌더링)

  • Lee, Sang-Hoon;Kim, Hyeon-Joong;Choi, Soo-Mi
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.520-528
    • /
    • 2013
  • Makeup simulation is a tool that tests various makeup methods on a virtual digital face using input and display devices. Although several simulation systems supporting various makeup styles have been recently developed, most systems have many limitations on realistic skin representations because they use 2D facial images. We develope a realistic makeup simulation method which can control skin reflectance and roughness parameters. The method allows a user to simulate makeup applications while changing skin parameters using high-resolution facial data acquired by 3D scanners. Besides we use a point-based shape representation which enables simple and flexible 3D rendering, and provide a more realistic makeup simulation by applying different skin parameters on each part of the face.

Risk Evaluation of a Road Slope on Hazard Using 3D Scanner (사면재해 평가의 3차원 스캐닝 기법적용)

  • Kwak, Young-Joo;Jang, Yong-Gu;Kang, In-Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.2 s.32
    • /
    • pp.45-50
    • /
    • 2005
  • Recently, slope failures are disastrous when they occur in mountainous area adjoining highways. The accidents associated with Slope failures have increased due to rapid urbanization of mountainous area. Therefore, the inspection of slope is conducted to maintain road safety as well as road function. In this study, we apply to the remedy which is comparing existent description to advanced technology using GIS. we utilize a 3D scanner, one of the advanced method, to generate precise and complete road slope model from expert point of view. In result, we are transferred practical data from external slope stability to hazard slope information. We suggest not only the database but also the method of road risk evaluation based on GIS.

  • PDF

오피스용 및 산업용 디지털 3차원 실물복제기 요소기술 개발에 관한 연구

  • 김동수;이원희;김성종;이택민;김광영;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.303-303
    • /
    • 2004
  • 3차원 실물복제기(RODS)는 3차원 스캐닝, SFFS 및 네트워크 등의 복합기능이 내장된 장치로서 제품개발 및 사무자동화등 다양한 분야에 적용 가능한 장비이다. 또한, 기존의 각각 독립된 시스템인 3D스캐너와 SFFS를 하나의 시스템으로 구성함으로서 제작시간과 업무 효율을 높일 수 있는 차세대 시스템의 일종이다. 실물복제기는 산업용과 오피스용으로 구분되어 질 수 있으며, 본 연구에서 개발하고자 하는 다종 재료용 하이브리드형 SFFS는 다품종 소량생산 환경에 적합한 제품의 제작 방식으로서 기능성 부품을 직접 제작/검증 할 수 있다.(중략)

  • PDF

A Study on Cross-section Extraction Method based on 3D Point Cloud Data (3차원 포인트클라우드 기반 단면 정보 추출 기술 개발)

  • Kim, Hoe-Min;Chun, Sungkuk;Kim, Un-Yong;Yun, Jeongrok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.277-278
    • /
    • 2022
  • 본 연구는 3차원 포인트클라우드로부터 단면 정보를 자동으로 추출할 수 있는 알고리즘에 관한 것이다. 3차원 스캐너로부터 획득한 포인트클라우드 데이터는 다양한 제조 공정의 결과물인 산업 제품의 접합 상태를 파악하는데 자주 사용된다. 하지만 많은 노이즈를 포함하는 포인트클라우드 데이터로부터 제조 상태에 대한 수치적인 결과를 반복적으로 획득하기에는 많은 비용이 수반된다. 따라서 본 연구는 산업 제품의 접합부에 대한 포인트클라우드로부터 단면 정보를 자동으로 추출할 수 있는 알고리즘을 소개하고자 한다.

Extraction and Implementation of MPEG-4 Facial Animation Parameter for Web Application (웹 응용을 위한 MPEC-4 얼굴 애니메이션 파라미터 추출 및 구현)

  • 박경숙;허영남;김응곤
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1310-1318
    • /
    • 2002
  • In this study, we developed a 3D facial modeler and animator that will not use the existing method by 3D scanner or camera. Without expensive image-input equipments, we can easily create 3D models only using front and side images. The system is available to animate 3D facial models as we connect to animation server on the WWW which is independent from specific platforms and softwares. It was implemented using Java 3D API. The facial modeler detects MPEG-4 FDP(Facial Definition Parameter) feature points from 2D input images, creates 3D facial model modifying generic facial model with the points. The animator animates and renders the 3D facial model according to MPEG-4 FAP(Facial Animation Parameter). This system can be used for generating an avatar on WWW.

A Study on the Image-Based 3D Modeling Using Calibrated Stereo Camera (스테레오 보정 카메라를 이용한 영상 기반 3차원 모델링에 관한 연구)

  • 김효성;남기곤;주재흠;이철헌;설성욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.27-33
    • /
    • 2003
  • The image-based 3D modeling is the technique of generating a 3D graphic model from images acquired using cameras. It is being researched as an alternative technique for the expensive 3D scanner. In this paper, we propose the image-based, 3D modeling system using calibrated stereo cameras. The proposed algorithm for rendering, 3D model consists of three steps, camera calibration, 3D reconstruction, and 3D registration step. In the camera calibration step, we estimate the camera matrix for the image aquisition camera. In the 3D reconstruction step, we calculate 3D coordinates using triangulation from corresponding points of the stereo image. In the 3D registration step, we estimate the transformation matrix that transforms individually reconstructed 3D coordinates to the reference coordinate to render the single 3D model. As shown the result, we generated relatively accurate 3D model.

  • PDF

A Image-based 3-D Shape Reconstruction using Pyramidal Volume Intersection (피라미드 볼륨 교차기법을 이용한 영상기반의 3차원 형상 복원)

  • Lee Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.127-135
    • /
    • 2006
  • The image-based 3D modeling is the technique of generating a 3D graphic model from images acquired using cameras. It is being researched as an alternative technique for the expensive 3D scanner. In this paper, I propose the image-based 3D modeling system using calibrated camera. The proposed algorithm for rendering 3D model is consisted of three steps, camera calibration, 3D shape reconstruction and 3D surface generation step. In the camera calibration step, I estimate the camera matrix for the image aquisition camera. In the 3D shape reconstruction step, I calculate 3D volume data from silhouette using pyramidal volume intersection. In the 3D surface generation step, the reconstructed volume data is converted to 3D mesh surface. As shown the result, I generated relatively accurate 3D model.