• 제목/요약/키워드: 2DEGs

검색결과 124건 처리시간 0.022초

The highly pathogenic H5N1 avian influenza virus induces the mitogen-activated protein kinase signaling pathway in the trachea of two Ri chicken lines

  • Vu, Thi Hao;Hong, Yeojin;Truong, Anh Duc;Lee, Sooyeon;Heo, Jubi;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Animal Bioscience
    • /
    • 제35권7호
    • /
    • pp.964-974
    • /
    • 2022
  • Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry and economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for studies on HPAIV resistance. Therefore, in this study, we investigated gene expression related to the mitogen-activated protein kinase (MAPK) signaling pathway by comparing non-infected, HPAI-infected resistant, and susceptible Ri chicken lines. Methods: Resistant (Mx/A; BF2/B21) and susceptible Ri chickens (Mx/G; BF2/B13) were selected by genotyping the Mx and BF2 genes. Then, the tracheal tissues of non-infected and HPAIV H5N1 infected chickens were collected for RNA sequencing. Results: A gene set overlapping test between the analyzed differentially expressed genes (DEGs) and functionally categorized genes was performed, including biological processes of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. A total of 1,794 DEGs were observed between control and H5N1-infected resistant Ri chickens, 432 DEGs between control and infected susceptible Ri chickens, and 1,202 DEGs between infected susceptible and infected resistant Ri chickens. The expression levels of MAPK signaling pathway-related genes (including MyD88, NF-κB, AP-1, c-fos, Jun, JunD, MAX, c-Myc), cytokines (IL-1β, IL-6, IL-8), type I interferons (IFN-α, IFN-β), and IFN-stimulated genes (Mx1, CCL19, OASL, and PRK) were higher in H5N1-infected than in non-infected resistant Ri chickens. MyD88, Jun, JunD, MAX, cytokines, chemokines, IFNs, and IFN-stimulated expressed genes were higher in resistant-infected than in susceptible-infected Ri chickens. Conclusion: Resistant Ri chickens showed higher antiviral activity compared to susceptible Ri chickens, and H5N1-infected resistant Ri chickens had immune responses and antiviral activity (cytokines, chemokines, interferons, and IFN-stimulated genes), which may have been induced through the MAPK signaling pathway in response to H5N1 infection.

Transcript Analysis of Wheat WAS-2 Gene Family under High Temperature Stress during Ripening Period

  • Ko, Chan Seop;Kim, Jin-Baek;Hong, Min Jeong;Kim, Kyeong Hoon;Seo, Yong Weon
    • Plant Breeding and Biotechnology
    • /
    • 제6권4호
    • /
    • pp.363-380
    • /
    • 2018
  • Wheat is frequently exposed to high temperature during anthesis and ripening period, which resulted in yield loss and detrimental end-use-quality. The transcriptome analysis of wheat under high temperature stress during the early stage of the grain filling period was undertaken. Three expression patterns of differentially expressed genes (DEGs) during grain filling period were identified. The DEGs of seed storage protein and starch-branching enzyme showed continuous increases in their expressions during high temperature stress, as well as during the recovery period. The activities of the enzymes responsible for the elimination of antioxidants were significantly affected by exposure to high temperature stress. Only the WAS-2 family genes showed increased transcription levels under high temperature stress in dehulled spikelets. The relative transcription levels for sub-genome specific WAS-2 genes suggested that WAS-2 genes reacted with over-expression under high temperature stress and decreased back to normal expression during recovery. We propose the role of WAS-2 as a protective mechanism during the stage of grain development under high temperature in spikelets.

Identification of Differentially Expressed Genes between Neonatal and Peripubertal Rat Thymi Using $GeneFishing^{TM}$ Polymerase Chain Reaction

  • Kang, Da-Won;Kim, Gyu-Tae;Han, Jae-Hee
    • Reproductive and Developmental Biology
    • /
    • 제31권1호
    • /
    • pp.55-60
    • /
    • 2007
  • Aging causes thymus involution, and genes in thymus play an important role in the development of the immune system. In this study, we compared genes expressed in thymus of neonatal and peripubertal rats using annealing control primers (ACPs)-based GeneFishing polymerase chain reaction (PCR) and semiquantitative reverse transcription (RT)-PCR. We identified 10 differentially expressed genes (DEGs) with 20 ACPs. Of 10 DEGs, bystin-like, collagen type V alpha 1 (COL5A1), and T-cell receptor beta-chain segment 2 (TCRB2) that are related to immune-function were detected in rat thymus. Bystin-like and TCRB2 were up-regulated, while COL5A1 was down-regulated in peripubertal thymus. Semiquantitative RT-PCR confirmed postnatal changes in expression of bystin-like, COL5A1, and TCRB2. These results suggest that bystin-like, COL5A1, and TCRB2 could regulate immune function controlled in thymus as age increases.

Improved Statistical Testing of Two-class Microarrays with a Robust Statistical Approach

  • Oh, Hee-Seok;Jang, Dong-Ik;Oh, Seung-Yoon;Kim, Hee-Bal
    • Interdisciplinary Bio Central
    • /
    • 제2권2호
    • /
    • pp.4.1-4.6
    • /
    • 2010
  • The most common type of microarray experiment has a simple design using microarray data obtained from two different groups or conditions. A typical method to identify differentially expressed genes (DEGs) between two conditions is the conventional Student's t-test. The t-test is based on the simple estimation of the population variance for a gene using the sample variance of its expression levels. Although empirical Bayes approach improves on the t-statistic by not giving a high rank to genes only because they have a small sample variance, the basic assumption for this is same as the ordinary t-test which is the equality of variances across experimental groups. The t-test and empirical Bayes approach suffer from low statistical power because of the assumption of normal and unimodal distributions for the microarray data analysis. We propose a method to address these problems that is robust to outliers or skewed data, while maintaining the advantages of the classical t-test or modified t-statistics. The resulting data transformation to fit the normality assumption increases the statistical power for identifying DEGs using these statistics.

Identification of genes involved in inbreeding depression of reproduction in Langshan chickens

  • Xue, Qian;Li, Guohui;Cao, Yuxia;Yin, Jianmei;Zhu, Yunfen;Zhang, Huiyong;Zhou, Chenghao;Shen, Haiyu;Dou, Xinhong;Su, Yijun;Wang, Kehua;Zou, Jianmin;Han, Wei
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.975-984
    • /
    • 2021
  • Objective: Inbreeding depression of reproduction is a major concern in the conservation of native chicken genetic resources. Here, based on the successful development of strongly inbred (Sinb) and weakly inbred (Winb) Langshan chickens, we aimed to evaluate inbreeding effects on reproductive traits and identify candidate genes involved in inbreeding depression of reproduction in Langshan chickens. Methods: A two-sample t-test was performed to estimate the differences in phenotypic values of reproductive traits between Sinb and Winb chicken groups. Three healthy chickens with reproductive trait values around the group mean values were selected from each of the groups. Differences in ovarian and hypothalamus transcriptomes between the two groups of chickens were analyzed by RNA sequencing (RNA-Seq). Results: The Sinb chicken group showed an obvious inbreeding depression in reproduction, especially for traits of age at the first egg and egg number at 300 days (p<0.01). Furthermore, 68 and 618 differentially expressed genes (DEGs) were obtained in the hypothalamus and ovary between the two chicken groups, respectively. In the hypothalamus, DEGs were mainly enriched in the pathways related to vitamin metabolism, signal transduction and development of the reproductive system, such as the riboflavin metabolism, Wnt signaling pathway, extracellular matrix-receptor interaction and focal adhesion pathways, including stimulated by retinoic acid 6, serpin family F member 1, secreted frizzled related protein 2, Wnt family member 6, and frizzled class receptor 4 genes. In the ovary, DEGs were significantly enriched in pathways associated with basic metabolism, including amino acid metabolism, oxidative phosphorylation, and glycosaminoglycan degradation. A series of key DEGs involved in folate biosynthesis (gamma-glutamyl hydrolase, guanosine triphosphate cyclohydrolase 1), oocyte meiosis and ovarian function (cytoplasmic polyadenylation element binding protein 1, structural maintenance of chromosomes 1B, and speedy/RINGO cell cycle regulator family member A), spermatogenesis and male fertility (prostaglandin D2 synthase 21 kDa), Mov10 RISC complex RNA helicase like 1, and deuterosome assembly protein 1) were identified, and these may play important roles in inbreeding depression in reproduction. Conclusion: The results improve our understanding of the regulatory mechanisms underlying inbreeding depression in chicken reproduction and provide a theoretical basis for the conservation of species resources.

Identification of Copper and Cadmium Induced Genes in Alfalfa Leaves through Annealing Control Primer Based Approach

  • Lee, Ki-Won;Rahman, Md. Atikur;Zada, Muhammad;Lee, Dong-Gi;Kim, Ki-Yong;Hwang, Tae Young;Ji, Hee Jung;Lee, Sang-Hoon
    • 한국초지조사료학회지
    • /
    • 제35권3호
    • /
    • pp.264-268
    • /
    • 2015
  • The present research investigated copper and cadmium stress-induced differentially expressed genes (DEGs) using annealing control primers (ACP) with the differential display reverse transcription polymerase chain reaction technique in alfalfa (Medicago sativa L. cv. Vernal) leaves. Alfalfa leaves were subjected to $250{\mu}M$ of copper and cadmium treatment for a period of 6 h. A total of 120 ACPs was used. During copper and cadmium treatment, 6 DEGs were found to be up or down regulated. During copper stress treatment, 1 DEG was up-regulated, and 3 novel genes were discovered. Similarly, during cadmium stress treatment, 1 DEG was up-regulated and 5 novel genes were identified. Among all 6 DEGs, DEG-4 was identified as the gene for trans-2,3-enoyl-CoA reductase, DEG-5 was identified as the gene for senescence-associated protein DIN1 and DEG-6 was identified for caffeic acid O-methyltransferase. All the up-regulated genes may play a role in copper and cadmium stress tolerance in alfalfa.

Single-Cell RNA Sequencing of Bone Marrow Mesenchymal Stem Cells from the Elderly People

  • Dezhou Zhu;Jie Gao;Chengxuan Tang;Zheng Xu;Tiansheng Sun
    • International Journal of Stem Cells
    • /
    • 제15권2호
    • /
    • pp.173-182
    • /
    • 2022
  • Background and Objectives: Bone marrow mesenchymal stem cells (BMSCs) show considerable promise in regenerative medicine. Many studies demonstrated that BMSCs cultured in vitro were highly heterogeneous and composed of diverse cell subpopulations, which may be the basis of their multiple biological characteristics. However, the exact cell subpopulations that make up BMSCs are still unknown. Methods and Results: In this study, we used single-cell RNA sequencing (scRNA-Seq) to divide 6,514 BMSCs into three clusters. The number and corresponding proportion of cells in clusters 1 to 3 were 3,766 (57.81%), 1,720 (26.40%), and 1,028 (15.78%). The gene expression profile and function of the cells in the same cluster were similar. The vast majority of cells expressed the markers defining BMSCs by flow cytometry and gene expression analysis. Each cluster had at least 20 differentially expressed genes (DEGs). We conducted Gene Ontology enrichment analysis on the top 20 DEGs of each cluster and found that the three clusters had different functions, which were related to self-renewal, multilineage differentiation and cytokine secretion, respectively. In addition, the function of the top 20 DEGs of each cluster was checked by the National Center for Biotechnology Information gene database to further verify our hypothesis. Conclusions: This study indicated that scRNA-Seq can be used to divide BMSCs into different subpopulations, demonstrating the heterogeneity of BMSCs.

Gene Expression According to Electromyostimulation after Atrophy Conditions and Muscle Atrophy in Skeletal Muscle

  • Park, Chang-Eun
    • 대한의생명과학회지
    • /
    • 제18권1호
    • /
    • pp.49-55
    • /
    • 2012
  • Numerous biochemical molecules have been implicated in the development of muscular atrophy. However, control mechanisms associated with muscular disease are not clear. The present study was conducted to investigate gene expression profiles of rat muscle during the denervation to atrophy transition processes. We isolated total RNA from rats suffering from partial muscle atrophy (P) and electromyostimulated atrophy (PE) and synthesized cDNA using annealing control primers. Using 20 ACPs for PCR, we cloned 18 DEGs using TOPO TA cloning vector, sequenced, and analyzed their identities using BLAST search. Sequences of 14 clones significantly matched database entries, while one clone was ESTs, and 3 clones were unidentified. Different expression profiles of selected DEGs between P and PE were confirmed. The troponin T, Fkbp1a, RGD1307554, Phtf1, Atp1a1 and Commd3 were highly expressed genes in the P and PE groups, while Krox-25 and TCOX2 were only expressed genes in the P group, the Sv2b and Marcks were only expressed genes in PE group. also, Cox8h was highly expressed genes in PE groups. The ASPH, ND1, and ARPL1 were highly expressed genes in the P and PE groups. List of genes obtained from the present study might provide an insight for the study of mechanism regulating muscle atrophy and electrostimulated muscle atrophy transitions. These data suggest that troponin T, Fkbp1a, RGD1307554, Phtf1, Atp1a1, and Commd3 are potentially useful as clinical biomarkers of age-related muscle atrophy and dysfunction.

Analysis of Differentially Expressed Genes Between Leaves and Grain Tissues of Three Wheat Cultivars

  • Kang, Yuna;Kang, Chon-Sik;Kim, Changsoo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2019년도 추계학술대회
    • /
    • pp.148-148
    • /
    • 2019
  • Wheat is a very important crop as a food source worldwide, but gluten in wheat causes a variety of allergic reactions. Previous studies have developed ${\omega}-5$ gliadin deleted O-free, known as the central antigen of WDEIA (wheat-dependent exercise-induced anaphylaxis). In this study, we performed RNA sequencing on the grains and leaves of the allergic-reduced species O-free and their cultivars, Keumkang and Olgeuru, to analyze differentially expressed genes (DEG) based on different cultivars and tissues. Tissues of all species were biologically repeated three times. We used bowtie2 version 2.3.5.1 to get sequence data from RNAseq and used cufflinks and Tophat programs to find DEG. When comparing leaf and grain tissues, a total of 1,244 DEGs were found in the leaf tissues while only 563 DEGs were found in the grain tissues. As a result of gene ontology analysis of differentially expressed genes, the leaf tissues were mostly included in the "catalytic activity" part of molecular function, "metabolic process" part of biological process, and "membrane" part of cell component. The grain tissues were mostly included in the "metabolic process" part of biological process, "binding" and "catalytic activity" part of molecular function, and "membrane, cell, cell part" parts of cell component. Based on these results, we present information on the differentially expressed genes of the three cultivars of leaves and grains. This study could be an important basis for studying the characteriztion of O-free.

  • PDF

한우 난포낭종에서 증가되는 섬유소원 유전자 발현 (Fibrinogen mRNA Expression Up-Regulated in Follicular Cyst of Korean Cattle)

  • 탁현민;한재희;강다원
    • 한국수정란이식학회지
    • /
    • 제25권1호
    • /
    • pp.29-34
    • /
    • 2010
  • 난포낭종은 소 번식 장애의 주요 원인 중의 하나이며, 다양한 유전자의 변화는 여러 세포와 조직 기능에 영향을 준다. 이러한 유전자 변화는 낭종성 난소에서도 나타날 수 있다. 이온 및 수송체와 관련된 유전자 변화가 한우의 난포낭종을 유발할 수 있을 것이라는 가설 하에 난포낭종성 난포에서 발현 변화를 보이는 유전자를 찾기 위하여 마이크로어레이 분석을 수행하였다. 마이크로어레이 분석 결과, 난포낭종성 난포에서 FGG와 LRP8이 증가하고, SLC44A4, SLC27A5, ANXA8 및 aquaporin 4는 감소하였다. 반정량적 역전사중합효소 연쇄 반응으로 마이크로어레이 분석 결과를 재확인하였다. 6개의 DEG 중 3개의 DEG(FGG, SLC44A4 및 aquaporin 4)는 마이크로어레이 분석 결과와 동일하게 증가와 감소를 보였다. 마이크로어레이와 역전사중합효소 반응에서 동일한 결과를 보이는 3개의 유전자 중 가장 크게 변화를 보인 섬유소원에 중점을 두고 연구를 수행하였다. 마이크로어레이와 역전사중합효소 연쇄 반응은 난포낭종성 난포에서 섬유소원 유전자 발현을 각각 8.4배와 1.7배 증가시켰다. 그러나 난포 및 과립층세포에서 섬유소원의 단백질 양은 웨스턴 블랏 분석으로 분석한 결과, 정상에 비하여 낭종에서 유의한 차이를 보이지 않았다. 본 연구에서 섬유소원은 유전자와 단백질 발현에 있어 상관관계는 보이지 않았지만 섬유소원 유전자는 정상 조직으로부터 난포낭종을 구별하는데 있어서 중요한 생물표지자가 될 수 있는 가능성을 제시한다.