The highly pathogenic H5N1 avian influenza virus induces the mitogen-activated protein kinase signaling pathway in the trachea of two Ri chicken lines |
Vu, Thi Hao
(Department of Animal Science and Technology, Chung-Ang University)
Hong, Yeojin (Department of Animal Science and Technology, Chung-Ang University) Truong, Anh Duc (Department of Biochemistry and Immunology, National Institute of Veterinary Research) Lee, Sooyeon (Department of Animal Science and Technology, Chung-Ang University) Heo, Jubi (Department of Animal Science and Technology, Chung-Ang University) Lillehoj, Hyun S. (Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture) Hong, Yeong Ho (Department of Animal Science and Technology, Chung-Ang University) |
1 | Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15-21. https://doi.org/10.1093/bioinformatics/bts635 DOI |
2 | Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 2013;31:46-53. https://doi.org/10.1038/nbt.2450 DOI |
3 | Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262 DOI |
4 | Karpala AJ, Lowenthal JW, Bean AG. Activation of the TLR3 pathway regulates IFNβ production in chickens. Dev Comp Immunol 2008;32:435-44. https://doi.org/10.1016/j.dci.2007.08.004 DOI |
5 | Krischuns T, Gunl F, Henschel L, et al. Phosphorylation of TRIM28 enhances the expression of IFN-β and proinflammatory cytokines during HPAIV infection of human lung epithelial cells. Front Immunol 2018;9:2229. https://doi.org/10.3389/fimmu.2018.02229 DOI |
6 | Hui KP, Lee SM, Cheung C-y, et al. Induction of proinflammatory cytokines in primary human macrophages by influenza A virus (H5N1) is selectively regulated by IFN regulatory factor 3 and p38 MAPK. J Immunol 2009;182:1088-98. https://doi.org/10.4049/jimmunol.182.2.1088 DOI |
7 | Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 2008;89:1-47. https://doi.org/10.1099/vir.0.83391-0 DOI |
8 | De Silva Senapathi U, Abdul-Cader MS, Amarasinghe A, et al. The in ovo delivery of CpG oligonucleotides protects against infectious bronchitis with the recruitment of immune cells into the respiratory tract of chickens. Viruses 2018;10:635. https://doi.org/10.3390/v10110635 DOI |
9 | Ranaware PB, Mishra A, Vijayakumar P, et al. Genome wide host gene expression analysis in chicken lungs infected with avian influenza viruses. PLoS One 2016;11:e0153671. https://doi.org/10.1371/journal.pone.0153671 DOI |
10 | Garcia M, Gil J, Ventoso I, et al. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 2006;70:1032-60. https://doi.org/10.1128/MMBR.00027-06 DOI |
11 | Seyama T, Ko J, Ohe M, et al. Population research of genetic polymorphism at amino acid position 631 in chicken Mx protein with differential antiviral activity. Biochem Genet 2006;44:432-43. https://doi.org/10.1007/s10528-006-9040-3 DOI |
12 | Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011;75:50-83. https://doi.org/10.1128/MMBR.00031-10 DOI |
13 | OIE. Terrestrial animal health code [Internet]. World Organisation for Animal Health; 2014. |
14 | Kabir SML. Avian flu (H5N1): Threat of "global pandemic" is growing and it's impact on the developing countries' economy. Afr J Microbiol Res 2010;4:1192-4. https://doi.org/10.5897/AJMR.9000111 DOI |
15 | Boonyanuwat K, Thummabutra S, Sookmanee N, Vatchavalkhu V, Siripholvat V. Influences of major histocompatibility complex class I haplotypes on avian influenza virus disease traits in Thai indigenous chickens. Anim Sci J 2006;77:285-9. https://doi.org/10.1111/j.1740-0929.2006.00350.x DOI |
16 | Juul-Madsen HR, Dalgaard T, Rontved CM, Jensen KH, Bumstead N. Immune response to a killed infectious bursal disease virus vaccine in inbred chicken lines with different major histocompatibility complex haplotypes. Poult Sci 2006;85:986-98. https://doi.org/10.1093/ps/85.6.986 DOI |
17 | Vu HT, Hong Y, Truong AD, et al. Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines. Anim Biosci 2022;35:367-76. https://doi.org/10.5713/ab.21.0163 DOI |
18 | Ludwig S, Ehrhardt C, Neumeier ER, et al. Influenza virus-induced AP-1-dependent gene expression requires activation of the JNK signaling pathway. J Biol Chem 2001;276:10990-8. https://doi.org/10.1074/jbc.M009902200 DOI |
19 | Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine 2007;25:5637-44. https://doi.org/10.1016/j.vaccine.2006.10.051 DOI |
20 | Staeheli P, Pitossi F, Pavlovic J. Mx proteins: GTPases with antiviral activity. Trends Cell Biol 1993;3:268-72. https://doi.org/10.1016/0962-8924(93)90055-6 DOI |
21 | Hong Y, Truong AD, Lee J, et al. Exosomal miRNA profiling from H5N1 avian influenza virus-infected chickens. BMC Vet Res 2021;52:36. https://doi.org/10.1186/s13567-021-00892-3 DOI |
22 | Pan H, Zhang Y, Luo Z, et al. Autophagy mediates avian influenza H5N1 pseudotyped particle-induced lung inflammation through NF-κB and p38 MAPK signaling pathways. Am J Physiol Lung Cell Mol Physiol 2014;306:L183-95. https://doi.org/10.1152/ajplung.00147.2013 DOI |
23 | Borgeling Y, Schmolke M, Viemann D, et al. Inhibition of p38 mitogen-activated protein kinase impairs influenza virus-induced primary and secondary host gene responses and protects mice from lethal H5N1 infection. J Biol Chem 2014;289:13-27. https://doi.org/10.1074/jbc.M113.469239 DOI |
24 | Wang X, Hinson ER, Cresswell P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2007;2:96-105. https://doi.org/10.1016/j.chom.2007.06.009 DOI |
25 | Huprikar J, Rabinowitz S. A simplified plaque assay for influenza viruses in Madin-Darby kidney (MDCK) cells. J Virol Methods 1980;1:117-20. https://doi.org/10.1016/0166-0934(80)90020-8 DOI |
26 | Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 2014;15:182. https://doi.org/10.1186/1471-2105-15-182 DOI |
27 | Rohaim MA, Santhakumar D, Naggar RFE, et al. Chickens Expressing IFIT5 ameliorate clinical outcome and pathology of highly pathogenic avian influenza and velogenic newcastle disease viruses. Front Immunol 2018;9:2025. https://doi.org/10.3389/fimmu.2018.02025 DOI |
28 | Wei L, Jiao P, Yuan R, et al. Goose toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and antiviral molecules involved in anti-H5N1 highly pathogenic avian influenza virus response. Vet Immunol Immunopathol 2013;153:99-106. https://doi.org/10.1016/j.vetimm.2013.02.012 DOI |
29 | Rong E, Wang X, Chen H, et al. Molecular mechanisms for the adaptive switching between the OAS/RNase L and OASL/RIG-I pathways in birds and mammals. Front Immunol 2018;9:1398. https://doi.org/10.3389/fimmu.2018.01398 DOI |
30 | Tag-EL-Din-Hassan HT, Morimatsu M, Agui T. Functional analysis of duck, goose, and ostrich 2'-5'-oligoadenylate synthetase. Infect Genet Evol 2018;62:220-32. https://doi.org/10.1016/j.meegid.2018.04.036 DOI |
31 | Pichlmair A, Lassnig C, Eberle C-A, et al. IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA. Nat Immunol 2011;12:624-30. https://doi.org/10.1038/ni.2048 DOI |