• Title/Summary/Keyword: 2D-proteomic analysis

Search Result 70, Processing Time 0.032 seconds

Proteomic Analysis of Bovine Longissimus Muscle Satellite Cells during Adipogenic Differentiation

  • Rajesh, Ramanna Valmiki;Park, Mi-Rim;Heo, Kang-Nyeong;Yoon, Du-Hak;Kim, Tae-Hun;Lee, Hyun-Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.685-695
    • /
    • 2011
  • Satellite cells are skeletal muscle progenitor/stem cells that reside between the basal lamina and plasma membranes of skeletal fibers in vivo. These cells can give rise to both myogenic and adipogenic cells. Given the possible role for differentiation of satellite cells into adipocytes in marbling and in some pathological disorders like sarcopenia, knowledge of the proteins involved in such process remains obscure. Using two-dimensional polyacrylamide gel electrophoresis coupled with mass spectrometry, we investigated the proteins that are differentially expressed during adipogenic differentiation of satellite cells from bovine longissimus muscle. Our proteome mapping strategy to identify the differentially expressed intracellular proteins during adipogenic differentiation revealed a total of 25 different proteins. The proteins up-regulated during adipogenic differentiation of satellite cells like Cathepsin H precursor, Retinal dehydrogenase 1, Enoyl-CoA hydratase, Ubiquinol-cytochrome-c reductase, T-complex protein 1 subunit beta and ATP synthase D chain were found to be associated with lipid metabolism. The down-regulated proteins like LIM protein, annexin proteins, cofilin-1, Rho GDP-dissociation inhibitor 1 and septin-2, identified in the present study were found to be associated with myogenesis. These results clearly demonstrate that the adipogenic conversion of muscle satellite cells is associated with the up-regulated and down-regulated proteins involved in adipogenesis and myogenesis respectively.

Analyses of Inter-cultivar Variation for Salinity Tolerance in Six Korean Rapeseed Cultivars

  • Lee, Yong-Hwa;Lee, Tae-Sung;Kim, Kwang-Soo;Jang, Young-Seok;Nam, Sang-Sik;Park, Kwang-Geun
    • Horticultural Science & Technology
    • /
    • v.30 no.4
    • /
    • pp.417-425
    • /
    • 2012
  • Salinity stress is one of the most serious factors limiting the productivity of agricultural crops. The aim of this study was to assess inter-cultivar (intraspecific) variation for salinity tolerance in six Korean rapeseed (Brassica napus L.) cultivars at the seedling stage. The effect of three different salinity stress levels (EC 4, 8, and 16 $dS{\cdot}m^{-1}$) on seedlings of six cultivars was investigated through leaf size, leaf dry weight, and leaf chlorosis. At the highest salinity level (16 $dS{\cdot}m^{-1}$), the mean decrease of leaf dry weight in 'Sunmang', 'Tammi', 'Tamla', 'Naehan', 'Youngsan', and 'Halla' was about 56.2, 56.9, 78.4, 79.3, 77.4, and 80.9%, respectively. 'Tammi' and 'Sunmang' showed much less reduction in leaf dry weight than all the other cultivars. In addition, diluted seawater treatments increased the occurrence of leaf chlorosis in six cultivars. At EC 8 and 16 $dS{\cdot}m^{-1}$, 'Naehan', 'Youngsan', and 'Halla' showed a higher level of leaf chlorosis than 'Tammi' 'Sunmang', and 'Tamla'. On the basis of these results, six cultivars were placed into salinity-tolerant and sensitive groups. 'Tammi' and 'Sunmang' were the salinity-tolerant cultivars, while 'Naehan', 'Halla', 'Youngsan', and 'Tamla' were the salinity-sensitive cultivars. 'Tammi' and 'Naehan' rated as the most tolerant and most sensitive cultivar, respectively. To further analyze protein expression profiles in 'Tammi' and 'Naehan', 2-D proteomic analysis was performed using the plants grown under diluted seawater treatments. We identified eight differentially displayed proteins that participate in photosynthesis, carbon assimilation, starch and sucrose metabolism, amino acid metabolism, cold and oxidative stress, and calcium signaling. The differential protein expressions in 'Tammi' and 'Naehan' are likely to correlate with the differential growth responses of both cultivars to salinity stress. These data suggest that 'Tammi' is better adapted to salinity stressed environments than 'Naehan'.

Proteomic analysis of serum proteins responsive to styrene exposure (Styrene 노출에 반응을 보이는 혈청 단백질에 대한 프로테오믹스 분석)

  • Kim, Ki-Woong;Heo, Kyung-Hwa;Won, Yong Lim;Jeong, Jin Wook;Kim, Tae Gyun;Park, Injeong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.3
    • /
    • pp.235-244
    • /
    • 2007
  • By comparing the proteins from the workers exposed to styrene with the ones from controls, it may be possible to identify proteins that play a role in the occurrence and progress of occupational disease and thus to study the molecular mechanisms of occupational disease. In order to find the biomarkers for assessing the styrene effects early, before clinical symptoms develop and to understand the mechanisms of adverse health effects, we surveyed 134 employees, among whom 52 workers(30 male and 22 female) were chronically exposed to styrene in 10 glass-reinforced plastic boat manufacturing factories in Korea and 82 controls had never been occupationally exposed to hazardous chemicals including styrene. The age and drinking habits and serum biochemistry such as total protein, BUN and serum creatinine in both groups were significantly different. Exposed workers were divided into three groups according to exposure levels of styrene(G1, below 1/2 TLV; G2, 1/2 TLV to TLV; G3, above TLV). The mean concentration of airborne styrene in G1 group was $10.93{\pm}11.33ppm$, and those of urinary mandelic acid(MA) and phenylglyoxylic acid(PGA) were $0.17{\pm}0.21$ and $0.13{\pm}0.11g/g$ creatinine, respectively. The mean concentration of airborne styrene in G2 and G3 groups were $47.54{\pm}22.43$ and $65.33{\pm}33.47ppm$, respectively, and levels of urinary metabolites such as MA and PGA increased considerably as expected with the increase in exposure level of styrene. The airborne styrene concentration were significantly correlated to the urinary concentration of MA(r=0.784, p=0.000) and PGA(r=0.626, p<0.001). In the 2D electrophoresis, the concentration of five proteins including complement C3 precursor, alpha-1-antitrypsin(AAT), vitamin D binding protein precursor(DBP), alpha-1-B-glycoprotein(A1BG) and inter alpha trypsin inhibitor(ITI) heavy chain-related protein were significantly altered in workers exposed to styrene compared with controls. While expression of complement C3 precursor and AAT increased by exposure to styrene, expression of DBP, A1BG and ITI heavy chain-related protein decreased. These results suggest that the exposure of styrene might affects levels of plasma proteinase, carriers of endogenous substances and immune system. In particular, increasing of AAT with the increase in exposure level of styrene can explain the tissue damage and inflammation by the imbalance of proteinase/antiproteinase and decrease of DBP, A1BG and ITI heavy chain-related protein in workers exposed to styrene is associated with dysfunction and/or declination in immune system and signal transduction

Comparative Proteomic Analysis of Yak Follicular Fluid during Estrus

  • Guo, Xian;Pei, Jie;Ding, Xuezhi;Chu, Min;Bao, Pengjia;Wu, Xiaoyun;Liang, Chunnian;Yan, Ping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1239-1246
    • /
    • 2016
  • The breeding of yaks is highly seasonal, there are many crucial proteins involved in the reproduction control program, especially in follicular development. In order to isolate differential proteins between mature and immature follicular fluid (FF) of yak, the FF from yak follicles with different sizes were sampled respectively, and two-dimensional gel electrophoresis (2-DE) of the proteins was carried out. After silver staining, the Image Master 2D platinum software was used for protein analysis and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) was performed for differential protein identification. The expression level of transferrin and enolase superfamily member 1 (ENOSF1) was determined by Western blotting for verification analysis. The results showed that 2-DE obtained an electrophoresis map of proteins from mature and immature yak FF with high resolution and repeatability. A comparison of protein profiles identified 12 differently expressed proteins, out of which 10 of them were upregulated while 2 were downregulated. Western blotting showed that the expression of transferrin and ENOSF1 was enhanced with follicular development. Both the obtained protein profiles and the differently expressed proteins identified in this study provided experimental data related to follicular development during yak breeding seasons. This study also laid the foundation for understanding the microenvironment during oocyte development.

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.

Identification of a Marker Protein for Cardiac Ischemia and Reperfusion Injury by Two-Dimensional Gel Electrophoresis and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry

  • Lee, Young-Suk;Kim, Na-Ri;Kim, Hyun-Ju;Joo, Hyun;Kim, Young-Nam;Jeong, Dae-Hoon;Cuong, Dang Van;Kim, Eui-Yong;Hur, Dae-Young;Park, Young-Shik;Hong, Yong-Geun;Lee, Sang-Kyung;Chung, Joon-Yong;Seog, Dae-Hyun;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.207-211
    • /
    • 2004
  • The purpose of the present study was to evaluate the expression of cardiac marker protein in rabbit cardiac tissue that was exposed to ischemic preconditioning (IPC), or ischemiareperfusion injury (IR) using two-dimensional gel electrophoresis (2DE) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). We compared 2DE gels of control (uninjured) cardiac tissue with those of IPC and IR cardiac tissue. Expression of one protein was detected in IR heart tissue, however the protein was not detected in the samples of control and IPC tissue. To further characterize the detected protein molecule, the protein in the 2D gel was isolated and subjected to trypsin digestion, followed by MALDI-MS. The protein was identified as myoglobin, which was confirmed also by Western blot analysis. These results are consistent with previous studies of cardiac markers in ischemic hearts, indicating myoglobin as a suitable marker of myocardial injury. In addition, the present use of multiple techniques indicates that proteomic analysis is an appropriate means to identify cardiac markers in studies of IPC and IR.

Profiling of Metabolites and Proteins from Eschscholtzia californica induced by Yeast Extract (Yeast Extract로 처리된 Eschscholtzia californica의 Metabolite와 Protein의 변화)

  • Cho Hwa-Young;Park Jeong-Jin;Yoon Sung-Yong;Part Jong Moon
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.285-290
    • /
    • 2005
  • Benzophenanthridine alkaloids - sanguinarine, chelirubine, macarpine, and chelerythrine are produced from Eschscholtzia californica (Californica Poppy, used as a sedative by Native Americans) and most of them are derived from dihydrosanguinarine. The properties of sanguinarine are the basis of its antimicrobial activity and its use in chemosurgery and skin cancer excision. For overproduction of sanguinarine from E. californica, yeast extract was used as elicitor and the elicited cell's metabolites were checked. Sanguinarine production was increased intracelluarly about 8 times in the cell and 5 times extracelluarly. We have peformed proteomic analysis of proteins sequentially extracted from E. califormica suspended cells which were cultured with elicitor, an increase of spot intensity was seen at 24 hours following elicitation. These proteins were separated by two-dimensional electrophoresis (2-DE). We found several spots that were expected to be related to benzophenanthridine alkaloids production by comparing the production profiles of metabolites such as sanguinarine. These results demonstrate the use of metabolite analysis as a tool for detecting target proteins related to metabolites production pathway.

Differential Proteome Expression of in vitro Proliferating Hanwoo Stromal Vascular Cells from Omental, Subcutaneous and Intramuscular Depots in Response to Hormone Deprivation and IGF-1, Estradiol-17β Addition

  • Rajesh, Ramanna Valmiki;Kim, Seong-Kon;Park, Min-Ah;Kwon, Seulemina;Chang, Jong-Soo;Yoon, Du-Hak;Kim, Tae-Hun;Lee, Hyun-Jeong
    • Journal of Animal Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.175-186
    • /
    • 2010
  • The aim of this study was to analyze the proteome expressions of proliferating stromal vascular cells from Hanwoo omental, subcutaneous and intramuscular depots subjected to hormone deprivation and IGF-1, Estradiol-$17{\beta}$ addition. For hormone deprivation or addition studies, the cells were either grown in 10% charcoal-dextran stripped fetal bovine serum (CD-FBS) or in 10% FBS supplemented medium. Further, to analyze the effect of insulin like growth factor (IGF-1) and $17\beta$-Estradiol (E2), cells were grown in 10% CD-FBS containing IGF-1 (10 ng/ml) or E2 (10 nM). The results showed that hormone deprivation had a negative impact on proliferation among the cells from all depots without any growth difference. On comparison of proliferation levels, higher levels were observed in cells that were grown in 10% FBS than in 10% CD-FBS alone or with IGF-1/E2. Proteome expression from preadipocytes grown in hormone deprivation conditions were compared by 2D-DIGE and MALDIToF/ToF. A total of twelve different proteins were found to be differentially expressed under hormone deprivation conditions. Further, our proteomic analysis with DIGE under IGF-1 and E2 addition revealed four proteins with differential expression levels. Moreover, the results highlighted in this study offer a role for each differentially expressed protein with respect to their effect in positive or negative regulation on proliferation.

Two-dimensional gel Electrophoresis of Helicobacter pylori for Proteomic Analysis

  • Jung, Tae-Sung;Kang, Seung-Chul;Choi, Yeo-Jeong;Jeon, Beong-Sam;Park, Jeong-Won;Jung, Sun-Ae;Song, Jae-Young;Choi, Sang-Haeng;Park, Seong-Gyu;Choe, Mi-Young;Lee, Byung-Sang;Byun, Eun-Young;Baik, Seung-Chul
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.2
    • /
    • pp.97-108
    • /
    • 2000
  • Two-dimensional gel electrophoresis (2-DE) is an essential tool of proteomics to analyse the entire set of proteins of an organism and its variation between organisms. Helicobacter pylori was tried to identify differences between strains. As the first step, whole H. pylori was lysed using high concentration urea contained lysis buffer [9.5 M Urea, 4% CHAPS, 35 mM Tris, 65 mM DTT, 0.01% SDS and 0.5% Ampholite (Bio-Rad, pH 3-10)]. The extract ($10\;{\mu}g$) was rehydrated to commercially available immobilised pH gradient (IPG) strips, then the proteins were separated according to their charges as the first dimensional separation. The IPG strips were placed on Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) to separate according to molecular mass of the proteins as the second dimension. The separated protein spots were visualised by silver staining in order to compare different expression of proteins between strains. Approximately 120 spots were identified in each mini-protein electrophoresised gel, furthermore about 65 to 75 spots were regarded as identical proteins in terms of pI value and molecular weight between strains used. In addition, distinct differences were found between strains, such as 219-1, Y7 and Y14, CH150. Two representative strains were examined using strips which had pH range from 4 to 7. This strips showed a number of isoforms which were considered large spots on pH range 3-10. Furthermore, the rest of spots on pH 4-7 IPG strips appeared very distinctive compared to broad range IPG strips. 2-DE seems to be an excellent tool for analysing and identifying variations between H. pylori strains.

  • PDF

Serum Anti-Gal-3 Autoantibody is a Predictive Marker of the Efficacy of Platinum-Based Chemotherapy against Pulmonary Adenocarcinoma

  • Yanagita, Kengo;Nagashio, Ryo;Ryuge, Shinichiro;Katono, Ken;Jiang, Shi-Xu;Tsuchiya, Benio;Nakashima, Hiroyasu;Fukuda, Eriko;Goshima, Naoki;Saegusa, Makoto;Satoh, Yukitoshi;Masuda, Noriyuki;Sato, Yuichi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7959-7965
    • /
    • 2015
  • Background: Identification of predictive markers for the efficacy of platinum-based chemotherapy is necessary to improve the quality of the life of cancer patients. Materials and Methods: We detected proteins recognized by autoantibodies in pretreated sera from patients with lung adenocarcinoma (AC) evaluated as showing progressive disease (PD) or a partial response (PR) after cisplatin-based chemotherapy by proteomic analysis. Then, the levels of the candidate autoantibodies in the pretreated serum were validated by dot-blot analysis for 22 AC patients who received platinum-based chemotherapy, and the expression of identified proteins was immunohistochemically analyzed in 40 AC biopsy specimens. Results: An autoantibody against galectin-3 (Gal-3) was detected in pretreated sera from an AC patient with PD. Serum IgG levels of anti-Gal-3 autoantibody were significantly higher in patients evaluated with PD than in those with PR and stable disease (SD) (p = 0.0084). Furthermore, pretreated biopsy specimens taken from patients evaluated as showing PD following platinumbased chemotherapy showed a tendency to have a higher positive rate of Gal-3 than those with PR and SD (p = 0.0601). Conclusions: These results suggest that serum IgG levels of anti-Gal-3 autoantibody may be useful to predict the efficacy of platinum-based chemotherapy for patients with lung AC.