Browse > Article
http://dx.doi.org/10.5713/ajas.2011.10345

Proteomic Analysis of Bovine Longissimus Muscle Satellite Cells during Adipogenic Differentiation  

Rajesh, Ramanna Valmiki (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration)
Park, Mi-Rim (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration)
Heo, Kang-Nyeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration)
Yoon, Du-Hak (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration)
Kim, Tae-Hun (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration)
Lee, Hyun-Jeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.24, no.5, 2011 , pp. 685-695 More about this Journal
Abstract
Satellite cells are skeletal muscle progenitor/stem cells that reside between the basal lamina and plasma membranes of skeletal fibers in vivo. These cells can give rise to both myogenic and adipogenic cells. Given the possible role for differentiation of satellite cells into adipocytes in marbling and in some pathological disorders like sarcopenia, knowledge of the proteins involved in such process remains obscure. Using two-dimensional polyacrylamide gel electrophoresis coupled with mass spectrometry, we investigated the proteins that are differentially expressed during adipogenic differentiation of satellite cells from bovine longissimus muscle. Our proteome mapping strategy to identify the differentially expressed intracellular proteins during adipogenic differentiation revealed a total of 25 different proteins. The proteins up-regulated during adipogenic differentiation of satellite cells like Cathepsin H precursor, Retinal dehydrogenase 1, Enoyl-CoA hydratase, Ubiquinol-cytochrome-c reductase, T-complex protein 1 subunit beta and ATP synthase D chain were found to be associated with lipid metabolism. The down-regulated proteins like LIM protein, annexin proteins, cofilin-1, Rho GDP-dissociation inhibitor 1 and septin-2, identified in the present study were found to be associated with myogenesis. These results clearly demonstrate that the adipogenic conversion of muscle satellite cells is associated with the up-regulated and down-regulated proteins involved in adipogenesis and myogenesis respectively.
Keywords
2-DE; Satellite Cells; Adipogenesis; Myogenesis; Proteome;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Singh, N. K., H. S. Chae, I. H. Hwang, Y. M. Yoo, C. N. Ahn, S. H. Lee, H. J. Lee, H. J. Park and H. Y. Chung. 2007. Transdifferentiation of porcine satellite cells to adipoblasts with ciglitizone. J. Anim. Sci. 85:1126-1135.   DOI   ScienceOn
2 Wang, Y. H., K. A. Byrne, A. Reverter, G. S. Harper, M. Taniguchi, S. M. McWilliam, H. Mannen, K. Oyama and S. A. Lehnert. 2005a. Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm. Genome 16:201-210.   DOI
3 Wang, Y. H., A. Reverter, H. Mannen, M. Taniguchi, G. S. Harper, K. Oyama, K. A. Byrne, A. Oka, S. Tsuji and S. A. Lehnert. 2005b. Transcriptional profiling of muscle tissue in growing Japanese Black cattle to identify genes involved with the development of intramuscular fat. Aust. J. Exp. Agric. 45:809-820.   DOI   ScienceOn
4 Yada, E., K. Yamanouchi and M. Nishihara. 2006. Adipogenic potential of satellite cells from distinct skeletal muscle origins in the rat. J. Vet. Med. Sci. 68:479-486.   DOI   ScienceOn
5 Yamanouchi, K., E. Yada, N. Ishiguro, T. Hosayama and M. Nishihara. 2006. Increased adipogenicity of cells from regenerating skeletal muscle cells. Exp. Cell Res. 312:2701-2711.   DOI   ScienceOn
6 Yang, M., Y. Zhang, J. Pan, J. Sun, J. Liu, P. Libby, G. K. Sukhora, A. Doria, N. Katunuma, O. D. Peroni, M. Guerre-Millo, B. B. Kahn, K. Clement and G. D. Shi. 2007. Cathepsin L activity controls adipogenesis and glucose tolerance. Nat. Cell Biol. 9:970-977.
7 Yeow, K., B. Phillips, C. Dani, C. Cabane, E. Zoubir Amri and B. Derijarda. 2001. Inhibition of myogenesis enables adipogenic trans-differentiation in the C2C12 myogenic cell line. FEBS Lett. 506:157-162.   DOI   ScienceOn
8 Ziouzenkova, Q., G. Orasanu, M. Sharlach, T. E. Akiyama, J. P. Berger, J. Viereck, J. A. Hamilton, G. Tang, G. G. Dolnikowski, S. Vogel, G. Duester and J. Plutzky. 2007. Retinaldehyde represses adipogenesis and diet-induced obesity. Nat. Med. 13:695-702.   DOI   ScienceOn
9 Mauro, A. 1961. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9:493-495.   DOI
10 Mora, M. 1989. Fibrous-adipose replacement in skeletal muscle biopsy. Eur. Heart J. 10:103-104.   DOI   ScienceOn
11 Nagaoka, R., K. Kusano, H. Abe and T. Obinata. 1995. Effects of cofilin on actin filamentous structures in cultured muscle cells Intracellular regulation of cofilin action. J. Cell Sci. 108:581-593.
12 Olson, E. N. 1992. Interplay between proliferation and differentiation within myogenic lineage. Dev. Biol. 154:261-272.   DOI   ScienceOn
13 Perez-Perez, R., F. J. Ortega-Delgado, E. Garcia-Santos, J. A. Lopez, E. Camafeita, W. Ricart, J. M. Fernandez-Real and B. Peral. 2009. Differential proteomics of omental and subcutaneous adipose tissue reflects their unalike biochemical and metabolic properties. J. Proteome Res. 8:1682-1693.   DOI   ScienceOn
14 Pethick, D. W., D. N. D'Souza, F. R. Dunshea and G. S. Harper. 2005. Fat metabolism and regional distribution in ruminants and pigs-influences of genetics and nutrition. Rec. Adv. Anim. Nutr. Aust. 15:39-45.
15 Kim, B. W., H. J. Choo, J. W. Lee, J. H. Kim and Y. G. Ko. 2004. Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts. Exp. Mol. Med. 36:476-485.   과학기술학회마을   DOI   ScienceOn
16 Punturieri, A., S. Filippov, E. Allen, I. Caras, R. Murray, V. Reddy and S. J. Weiss. 2000. Regulation of elastinolytic cysteine proteinase activity in normal and cathepsin K-deficient human macrophages. J. Exp. Med. 192:789-799.   DOI
17 Ramirez-Zacarias, J. L., F. Castro-Munozledo and W. Kuri-Harcuch. 1992. Quantization of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil Red O. Histochemistry 97:493-497.   DOI
18 Renesa, J., F. Bouwmana, J. P. Nobenb, C. Eveloc, J. Robbenb and E. Mariman. 2005. Protein profiling of 3T3-L1 adipocyte differentiation and (tumor necrosis factor a-mediated) starvation. Cell. Mol. Life Sci. 62:492-503.   DOI
19 Kim, N. K., S. H. Lee, Y. M. Cho, E. S. Son, K. Y. Kim, C. S. Lee, D. Yoon, S. K. Im, S. J. Oh and E. W. Park. 2009. Proteome analysis of the m. longissimus dorsi between fattening stages in Hanwoo steer. BMB Rep. 42:433-438.   과학기술학회마을   DOI   ScienceOn
20 Kinoshita, M. 2006. Diversity of septin scaffolds. Curr. Opin. Cell Biol. 18:54-60.   DOI   ScienceOn
21 Kokta, T. A., M. V. Dodson, A. Gertler and R. A. Hill. 2004. Intercellular signaling between adipose tissue and muscle tissue. Domest. Anim. Endocrinol. 27:303-331.   DOI   ScienceOn
22 Kong, Y., M. J. Flick, A. J. Kudla and S. F. Konieczny. 1996. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol. Cell. Biol. 17:4750-4760.
23 Lennon, N. J., A. Kho, B. J. Bacskai, S. L. Perlmutter, B. T. Hyman and R. H. Brown Jr. 2003. Dysferlin interacts with Annexins A1 and A2 and Mediates Sarcolemmal Wound-healing. J. Biol. Chem. 278:50466-50473.   DOI   ScienceOn
24 Kook, S. H., K. C. Choi, Y. O. Son, K. Y. Lee, I. H. Hwang, H. J. Lee, J. S. Chang, I. H. Choi and J. C. Lee. 2006. Satellite cells isolated from adult Hanwoo muscle can proliferate and differentiate into myoblast and adipose-like cells. Mol. Cells 22:239-245.   과학기술학회마을
25 Kunej, T., Z. Wang, J. J. Michal, T. F. Daniels, N. S. Magnuson and Z. Jiang. 2007. Functional UQCRC1 polymorphisms affect promoter activity and body lipid accumulation. Obes. Res. 15:2896-2901.   DOI   ScienceOn
26 Landry, F., C. R. Lombardo and J. W. Smith. 2000. A method for application of samples to Matrix-Assisted Laser Desorption Ionization Time-of-Flight targets that enhances peptide detection. Anal. Biochem. 279:1-8.   DOI   ScienceOn
27 Chung, K. Y. and B. J. Johnson. 2008. Application of cellular mechanisms to growth and development of food producing animals. J. Anim. Sci. 86:E226-E235.
28 Chung, K. Y., D. K. Lunt, C. B. Choi, S. H. Chae, R. D. Rhoades, T. H. Adams, B. Boren and S. B. Smith. 2006. Lipid characteristics of subcutaneous adipose tissue and M. Longissimus thoracis of Angus and Wagyu steers fed to U.S. and Japanese endpoints. Meat Sci. 73:431-442.
29 Cooper, R. N., S. Tajbakhsh, V. Mouly, G. Cossu, M. Buckingham and G. S. Butler-Browne. 1999. In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J. Cell Sci. 112:2895-2901.
30 Doumit, M. E. and R. A. Merkel. 1992. Conditions for the isolation and culture of porcine myogenic satellite cells. Tissue Cell 24:253-262.   DOI   ScienceOn
31 Hellmann, U., C. Wemstedt, J. Gonez and C. H. Heldin. 1995. Improvement of an "In-gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem. 224:451-455.   DOI   ScienceOn
32 Dovas, A. and J. R. Couchman. 2005. RhoGDI: Multiple functions in the regulation of Rho family GTPase activities. Biochem. J. 390:1-9.   DOI   ScienceOn
33 Florini, J. R., D. Z. Ewton and K. A. Magri. 1991. Hormones, growth factors, and myogenic differentiation. Annu. Rev. Physiol. 53:201-216.   DOI   ScienceOn
34 Grounds, M. D., K. L. Garrett, M. C. Lai, W. E. Wright and M. W. Beilharz. 1992. Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res. 267:99-104.   DOI
35 Holterman, C. E. and M. A. Rudnicki. 2005. Molecular regulation of satellite cell function. Semin. Cell Dev. Biol. 16:575-584.   DOI   ScienceOn
36 Hu, E., P. Tontonoz and B. M. Spiegelman. 1995. Transdifferentiation of myoblast by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc. Natl. Acad. Sci. USA. 92:9856-9860.   DOI
37 Asakura, A., M. Komaki and M. Rudnicki. 2001. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic and adipogenic differentiation. Differentiation 68:245-253.   DOI   ScienceOn
38 Bernard, C., I. Cassar-Malek, M. Le Cunff, H. Dubroeucq, G. Renand and J. F. Hocquette. 2007. New indicators of beef sensory quality revealed by expression of specific genes. J. Agric. Food Chem. 55:5229-5237.   DOI   ScienceOn
39 Bernlohr, D. A., M. A. Bolanowski, T. J. Kelly Jr and M. D. Lane. 1985. Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3-L1 preadipocytes. J. Biol. Chem. 260:5563-5567.
40 Brandt, U. and B. Trumpower. 1994. The proton motive Q cycle in mitochondria and bacteria. Crit. Rev. Biochem. Mol. Biol. 29:165-197.   DOI
41 Brian, B. J., V. E. Anderson and G. A. Petsko. 2002. Structural mechanism of Enoyl-CoA hydratase: Three atoms from a single water are added in either an E1cb stepwise or concerted Fashion. Biochemistry 41:2621-2629.   DOI   ScienceOn
42 Bryan, B. A., D. Li, X. Wu and M. Liu. 2005. The Rho family of small GTPases: Crucial regulators of skeletal myogenesis. Cell. Mol. Life Sci. 62:1547-1555.   DOI   ScienceOn
43 Burton, N. M., J. Vierck, L. Krabbenhoft, K. Bryne and M. V. Dodson. 2000. Methods for animal satellite cell culture under a variety of conditions. Methods Cell Sci. 22:51-61.   DOI   ScienceOn
44 Campion, D. R. 1984. The muscle satellite cell: a review. Int. Rev. Cytol. 87:225-251.   DOI
45 Charge, S. B. and M. A. Rudnicki. 2004. Cellular and molecular regulation of muscle regulation. Physiol. Rev. 84:209-238.   DOI   ScienceOn
46 Chaze, T., B. Meunier, C. Chambon, C. Jurie and B. Picard. 2008. In vivo proteome dynamics during early bovine myogenesis. Proteomics 8:4236-4248.   DOI   ScienceOn
47 Allen, R. E. and L. L. Rankin. 1990. Regulation of satellite cells during skeletal muscle growth and development. Proc. Soc. Exp. Biol. Med. 94:81-86.
48 Ahmed, M. and P. Bergsten. 2005. Glucose-induced changes of multiple mouse islet proteins analysed by two-dimensional gel electrophoresis and mass spectrometry. Diabetologia 48:477-485.   DOI
49 Ailhaud, G., P. Grimaldi and R. Negrel. 1992. Cellular and molecular aspects of adipose tissue development. Annu. Rev. Nutr. 12:207-233.   DOI   ScienceOn