DOI QR코드

DOI QR Code

Analyses of Inter-cultivar Variation for Salinity Tolerance in Six Korean Rapeseed Cultivars

  • Lee, Yong-Hwa (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Tae-Sung (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Kwang-Soo (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Jang, Young-Seok (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Nam, Sang-Sik (Planning & Coordination Division, National Institute of Crop Science, Rural Development Administration) ;
  • Park, Kwang-Geun (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration)
  • Received : 2011.10.21
  • Accepted : 2012.04.12
  • Published : 2012.08.30

Abstract

Salinity stress is one of the most serious factors limiting the productivity of agricultural crops. The aim of this study was to assess inter-cultivar (intraspecific) variation for salinity tolerance in six Korean rapeseed (Brassica napus L.) cultivars at the seedling stage. The effect of three different salinity stress levels (EC 4, 8, and 16 $dS{\cdot}m^{-1}$) on seedlings of six cultivars was investigated through leaf size, leaf dry weight, and leaf chlorosis. At the highest salinity level (16 $dS{\cdot}m^{-1}$), the mean decrease of leaf dry weight in 'Sunmang', 'Tammi', 'Tamla', 'Naehan', 'Youngsan', and 'Halla' was about 56.2, 56.9, 78.4, 79.3, 77.4, and 80.9%, respectively. 'Tammi' and 'Sunmang' showed much less reduction in leaf dry weight than all the other cultivars. In addition, diluted seawater treatments increased the occurrence of leaf chlorosis in six cultivars. At EC 8 and 16 $dS{\cdot}m^{-1}$, 'Naehan', 'Youngsan', and 'Halla' showed a higher level of leaf chlorosis than 'Tammi' 'Sunmang', and 'Tamla'. On the basis of these results, six cultivars were placed into salinity-tolerant and sensitive groups. 'Tammi' and 'Sunmang' were the salinity-tolerant cultivars, while 'Naehan', 'Halla', 'Youngsan', and 'Tamla' were the salinity-sensitive cultivars. 'Tammi' and 'Naehan' rated as the most tolerant and most sensitive cultivar, respectively. To further analyze protein expression profiles in 'Tammi' and 'Naehan', 2-D proteomic analysis was performed using the plants grown under diluted seawater treatments. We identified eight differentially displayed proteins that participate in photosynthesis, carbon assimilation, starch and sucrose metabolism, amino acid metabolism, cold and oxidative stress, and calcium signaling. The differential protein expressions in 'Tammi' and 'Naehan' are likely to correlate with the differential growth responses of both cultivars to salinity stress. These data suggest that 'Tammi' is better adapted to salinity stressed environments than 'Naehan'.

Keywords

References

  1. Abdel-Hady, M.S. 2001. Wheat plantlets production via shoot tips under salinity stress. J. Agric. Sci. 26:4841-4857.
  2. Abu-Romman, S. and M. Shatnawi. 2010. Isolation and expression analysis of chloroplastic copper/zinc superoxide dismutase gene in barley. South African J. Bot. 77:328-334.
  3. Albassam, B.A. 2001. Effect of nitrate nutrition on growth and nitrogen assimilation of pearl millet exposed to sodium chloride stress. J. Plant Nutr. 24:1325-1335. https://doi.org/10.1081/PLN-100106984
  4. Anderson, N.L., R. Esquer-Blasco, J.P. Hofmann, and N.G. Anderson. 1991. A two-dimensional gel database of rat liver proteins useful in gene regulation and drug effects studies. Electrophoresis 12:907-930. https://doi.org/10.1002/elps.1150121110
  5. Apse, M.P., G.S. Aharon, W.A. Snedden, and E. Blumwald. 1999. Salt tolerance conferred by overexpression of a vacuolar $Na^{+}/H^{+}$ antiport in Arabidopsis. Science 285:1256-1258. https://doi.org/10.1126/science.285.5431.1256
  6. Ashraf, M. and T. McNeilly. 2004. Salinity Tolerance in Brassica Oilseeds. Crit. Rev. Plant Sci. 23:157-174. https://doi.org/10.1080/07352680490433286
  7. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  8. Bybordi, A. and J. Tabatabaei. 2009. Effect of Salinity Stress on Germination and Seedling Properties in Canola Cultivars (Brassica napus L.). Not. Bot. Hort. Agrobot. Cluj 37:71-76.
  9. Engel, N., K. van den Daele, U. Kolukisaoqlu, K. Morgenthal, W. Weckwerth, T. Pärnik, O. Keerberg, and H. Bauwe. 2007. Deletion of glycine decarboxylase in Arabidopsis is lethal under nonphotorespiratory conditions. Plant Physiol. 144: 1328-1335. https://doi.org/10.1104/pp.107.099317
  10. Gaxiola, R.A., R. Rao, A. Sherman, P. Grisafi, S.L. Alper, and G.R. Fink. 1999. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA 96:1480-1485. https://doi.org/10.1073/pnas.96.4.1480
  11. Gosti, F., Bertauche, N., Vartanian, N. and J. Giraudat. 1995. Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol. Gen. Genet. 246:10-18. https://doi.org/10.1007/BF00290128
  12. Goulas, E., M. Schubert, T. Kieselbach, L.A. Kleczkowski, P. Gardeström, W. Schröder, and V. Hurry. 2006. The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant J. 47:720-734. https://doi.org/10.1111/j.1365-313X.2006.02821.x
  13. He, T. and G.R. Cramer. 1992. Growth and mineral nutrition of six rapid-cycling Brassica species in response to seawater salinity. Plant Soil 139:285-294. https://doi.org/10.1007/BF00009320
  14. Khan, M.A. and S. Gulzar. 2003. Germination responses of Sporobolus ioclados: A saline desert grass. J. Arid Environ. 55:453-464. https://doi.org/10.1016/S0140-1963(02)00294-X
  15. Lunn, J.E., A.R. Ashton, M.D. Hatch, and H.W. Heldt. 2000. Purification, molecular cloning, and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants. Proc. Natl. Acad. Sci. USA. 97:12914-12919. https://doi.org/10.1073/pnas.230430197
  16. Nambara, E. and A. Marion-Poll. 2005. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56:165-185. https://doi.org/10.1146/annurev.arplant.56.032604.144046
  17. Paludan-Müller, G., H. Saxe, L.B. Pedersen, and T.B. Randrup. 2002. Differences in salt sensitivity of four deciduous tree species to soil or airborne salt. Physiol. Plant. 114:223-230. https://doi.org/10.1034/j.1399-3054.2002.1140208.x
  18. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68:850-858. https://doi.org/10.1021/ac950914h
  19. Tuteja, N. 2007. Mechanisms of high salinity tolerance in plants. Methods Enzymol. 428:410-438.
  20. Uno, Y., M.A. Rodriguez Milla, E. Maher, and J.C. Cushman. 2009. Identification of proteins that interact with catalytically active calcium-dependent protein kinases from Arabidopsis. Mol. Genet. Genomics 281:375-390. https://doi.org/10.1007/s00438-008-0419-1
  21. Vera-Estrella, R., B.J. Barkla, L. García-Ramírez, and O. Pantoja. 2005. Salt Stress in Thellungiella halophila Activates $Na^{+}$ Transport Mechanisms Required for Salinity Tolerance. Physiol. Plant. 139:1507-1517. https://doi.org/10.1104/pp.105.067850
  22. Xu, K., P. Hong, and L.J. Luo. 2009. Overexpression of AtNHX1, a vacuolar $Na^{+}/H^{+}$ antiporter from Arabidopsis thalina, in Petunia hybrida, enhances salt and drought tolerance. J. Plant Biol. 52:453-461. https://doi.org/10.1007/s12374-009-9058-2
  23. Yamaguchi-Shinozaki, K. and K. Shinozaki. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57:781-803. https://doi.org/10.1146/annurev.arplant.57.032905.105444
  24. Zhang, H.X. and E. Blumwald. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol. 19:765-768. https://doi.org/10.1038/90824
  25. Zhang, H.X., J.N. Hodson, J.P. Williams, and E. Blumwald. 2001. Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl. Acad. Sci. USA 98:12832-12836. https://doi.org/10.1073/pnas.231476498