• Title/Summary/Keyword: 2D materials

Search Result 6,073, Processing Time 0.077 seconds

Two-dimensional heterostructures for All-2D Electronics

  • Lee, Gwan-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.100-100
    • /
    • 2016
  • Among various two-dimensional (2D) materials, 2D semiconductors and insulators have attracted a great deal of interest from nanoscience community beyond graphene, due to their attractive and unique properties. Such excellent characteristics have triggered highly active researches on 2D materials, such as hexagonal boron nitride (hBN), molybdenum disulfide (MoS2), and tungsten diselenide (WSe2). New physics observed in 2D semiconductors allow for development of new-concept devices. Especially, these emerging 2D materials are promising candidates for flexible and transparent electronics. Recently, van der Waals heterostructures (vdWH) have been achieved by putting these 2D materials onto another, in the similar way to build Lego blocks. This enables us to investigate intrinsic physical properties of atomically-sharp heterostructure interfaces and fabricate high performance optoelectronic devices for advanced applications. In this talk, fundamental properties of various 2D materials will be introduced, including growth technique and influence of defects on properties of 2D materials. We also fabricate high performance electronic/optoelectronic devices of vdWH, such as transistors, memories, and solar cells. The device platform based on van der Waals heterostructures show huge improvement of devices performance, high stability and transparency/flexibility due to unique properties of 2D materials and ultra-sharp heterointerfaces. Our work paves a new way toward future advanced electronics based on 2D materials.

  • PDF

A Review on Transfer Process of Two-dimensional Materials

  • Kim, Chan;Yoon, Min-Ah;Jang, Bongkyun;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Large-area two-dimensional (2D) materials synthesized by chemical vapor deposition on donor substrates are promising functional materials for conductors, semiconductors, and insulators in flexible and transparent devices. In most cases, 2D materials should be transferred from a donor substrate to a target substrate; however, 2D materials are prone to damage during the transfer process. The damages to 2D materials during transfer are caused by contamination, tearing, and chemical doping. For the commercialization of 2D materials, a damage-free, large-area, and productive transfer process is needed. However, a transfer process that meets all three requirements has yet to be developed. In this paper, we review the recent progress in the development of transfer processes for 2D materials, and discuss the principles, advantages, and limitations of each process. The future prospects of transfer processes are also discussed. To simplify the discussion, the transfer processes are classified into four categories: wet transfer, dry transfer, mechanical transfer, and electro-chemical transfer. Finally, the "roll-to-roll" and "roll-to-plate" dry transfer process is proposed as the most promising method for the commercialization of 2D materials. Moreover, for successful dry transfer of 2D materials, it is necessary to clearly understand the adhesion properties, viscoelastic behaviors, and mechanical deformation of the transfer film used as a medium in the transfer process.

Enhancing Electrical Properties of N-type Bismuth Telluride Alloys through Graphene Oxide Incorporation in Extrusion 3D Printing

  • Jinhee Bae;Seungki Jo ;Kyung Tae Kim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.318-323
    • /
    • 2023
  • The thermoelectric effect, which converts waste heat into electricity, holds promise as a renewable energy technology. Recently, bismuth telluride (Bi2Te3)-based alloys are being recognized as important materials for practical applications in the temperature range from room temperature to 500 K. However, conventional sintering processes impose limitations on shape-changeable and tailorable Bi2Te3 materials. To overcome these issues, three-dimensional (3D) printing (additive manufacturing) is being adopted. Although some research results have been reported, relatively few studies on 3D printed thermoelectric materials are being carried out. In this study, we utilize extrusion 3D printing to manufacture n-type Bi1.7Sb0.3Te3 (N-BST). The ink is produced without using organic binders, which could negatively influence its thermoelectric properties. Furthermore, we introduce graphene oxide (GO) at the crystal interface to enhance the electrical properties. The formed N-BST composites exhibit significantly improved electrical conductivity and a higher Seebeck coefficient as the GO content increases. Therefore, we propose that the combination of the extrusion 3D printing process (Direct Ink Writing, DIW) and the incorporation of GO into N-BST offers a convenient and effective approach for achieving higher thermoelectric efficiency.

Effect of Bulk Shape on Mechanical Properties of Ti-6Al-4V Alloy Manufactured by Laser Powder Bed Fusion (Laser Powder Bed Fusion 공정으로 제조된 Ti-6Al-4V 합금의 형상 차이에 따른 기계적 특성 변화)

  • Haeum Park;Yeon Woo Kim;Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Jung Gi Kim;Jeong Min Park
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.140-145
    • /
    • 2023
  • Although the Ti-6Al-4V alloy has been used in the aircraft industry owing to its excellent mechanical properties and low density, the low formability of the alloy hinders broadening its applications. Recently, laser-powder bed fusion (L-PBF) has become a novel process for overcoming the limitations of the alloy (i.e., low formability), owing to the high degree of design freedom for the geometry of products having outstanding performance used in high-tech applications. In this study, to investigate the effect of bulk shape on the microstructure and mechanical properties of L-PBFed Ti-6Al-4V alloys, two types of samples are fabricated using L-PBF: thick and thin samples. The thick sample exhibits lower strength and higher ductility than the thin sample owing to the larger grain size and lower residual dislocation density of the thick sample because of the heat input during the L-PBF process.

Exploring Thermoelectric Transport Properties and Band Parameters of n-Type Bi2-xSbxTe3 Compounds Using the Single Parabolic Band Model

  • Linh Ba Vu;Soo-ho Jung;Jinhee Bae;Jong Min Park;Kyung Tae Kim;Injoon Son;Seungki Jo
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.119-125
    • /
    • 2024
  • The n-type Bi2-xSbxTe3 compounds have been of great interest due to its potential to achieve a high thermoelectric performance, comparable to that of p-type Bi2-xSbxTe3. However, a comprehensive understanding on the thermoelectric properties remains lacking. Here, we investigate the thermoelectric transport properties and band characteristics of n-type Bi2-xSbxTe3 (x = 0.1 - 1.1) based on experimental and theoretical considerations. We find that the higher power factor at lower Sb content results from the optimized balance between the density of state effective mass and nondegenerate mobility. Additionally, a higher carrier concentration at lower x suppresses bipolar conduction, thereby reducing thermal conductivity at elevated temperatures. Consequently, the highest zT of ~ 0.5 is observed at 450 K for x = 0.1 and, according to the single parabolic band model, it could be further improved by ~70 % through carrier concentration tuning.

A Study on Feasibility of Hexagonal Phase ZnS:$Mn^{2+}$ Phosphor for Low-voltage Display Applications

  • Shin, Sang-Hoon;Lee, Sang-Hyuk;You, Yong-Chan;Jung, Joa-Young;Park, Chang-Won;Chang, Dong-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.815-818
    • /
    • 2002
  • Mn doped hexagonal phase of ZnS has been studied as a yellow-orange phosphor for the application to fluorescent displays operated at low voltages. It was found that luminescence from $Mn^{2+}$ was increased as the Mn concentration was increased up to1.2 mol% of host lattice. This study has been attempted by adding trivalent ions such as $Al^{3+}$ or $Bi^{3+}$ to ZnS:Mn as an agent to do the efficient incorporation of Mn ions into ZnS:Mn lattice, resulting in a significant improvement in the phosphor performance, especially at low voltages.

  • PDF

Fabrication of 2-D photonic crystal with holographic lithography (홀로그램피 리소그래피 방법을 이용한 2차원 포토닉 크리스탈 제작)

  • Ju, Long-Yun;Nam, Ki-Hyun;Kim, Hyun-Koo;Choi, Hyuk;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.162-163
    • /
    • 2007
  • In this paper, we fabrication of 2-D photonic crytal using holographic lithography. We used Ag doped chalcogenide AsGeSeS film and He-Ne (632.8nm) (P:P) Polarized laser beam. The thickness of Ag thin film was varied from 60nm and the thickness of chalcogenide thin film was varied from 2um. Frist, holographic lithography with 1-D photonic crystal on Ag/AsGeSeS film. And than revolved the sample $90^{\circ}$ to fabricate 2-D photonic crystal with holographic lithography.

  • PDF

Hole Defects on Two-Dimensional Materials Formed by Electron Beam Irradiation: Toward Nanopore Devices

  • Park, Hyo Ju;Ryu, Gyeong Hee;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.107-114
    • /
    • 2015
  • Two-dimensional (2D) materials containing hole defects are a promising substitute for conventional nanopore membranes like silicon nitride. Hole defects on 2D materials, as atomically thin nanopores, have been used in nanopore devices, such as DNA sensor, gas sensor and purifier at lab-scale. For practical applications of 2D materials to nanopore devices, researches on characteristics of hole defects on graphene, hexagonal boron nitride and molybdenum disulfide have been conducted precisely using transmission electron microscope. Here, we summarized formation, features, structural preference and stability of hole defects on 2D materials with atomic-resolution transmission electron microscope images and theoretical calculations, emphasizing the future challenges in controlling the edge structures and stabilization of hole defects. Exploring the properties at the local structure of hole defects through in situ experiments is also the important issue for the fabrication of realistic 2D nanopore devices.

Characterization of mechanical and photocatalytic performance on cement-based materials with TiO2 particles for binder jet 3D printing (바인더젯 3D 프린팅을 위한 TiO2 입자를 함유한 시멘트 기반 재료의 기계적 성능 및 광촉매 특성 분석)

  • Liu, Jun-Xing;Li, Pei-Qi;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.69-70
    • /
    • 2023
  • The development of advanced 3D printing technologies has opened up new opportunities for customized digital designs in the construction industry. Using nano- and micro-scale additives is expected to improve the performance of cement-based materials in 3D printing. TiO2 particles have been widely used as reinforcing additives in cement-based materials. Therefore, this study aims to investigate the application of cement-based materials containing multi-size TiO2 particles in binder jet 3D printing and the effect of different-size TiO2 particles on the performance of printed samples. TiO2 particles exhibit an excellent filling effect, which increases the density of the printed samples and promotes hydration, thereby improving the compressive strength of the samples. In addition, larger TiO2 particles exert more pronounced filling and photocatalytic effects on the resulting samples.

  • PDF