• 제목/요약/키워드: 2D Periodic Structures

검색결과 37건 처리시간 0.029초

Study on Wave Absorption of 1D-/2D-Periodic EBG Structures and/or Metamaterial Layered Media as Frequency Selective Surfaces

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • 제9권1호
    • /
    • pp.46-52
    • /
    • 2009
  • This paper conducts a study on the frequency-dependent filtering and blocking effects of a variety of periodic structures, dubbed frequency selective surface(FSS). The periodic structures of interest are 1D and 2D repeated patterns of metal patches or slots sitting on the interface between the two different regions in the layered media which will show the capacitive or inductive behaviors and incorporated with the electromagnetic bandgap(EBG) geometry as another stratified media. Besides the normal substances so called double positive(DPS)-type in the layered media, metamaterials of double negative(DNG) are considered as layering components on the purpose of investigating the unusual electromagnetic phenomena. Frequency responses of transmission(absorption in terms of scattering) and reflection will be calculated by a numerical analysis which can be validated by the comparison with the open literature and demonstrated for the periodic structures embedding metamaterials or not. Most importantly, numerous examples of FSS will present the useful guidelines to have absorption or reflection properties in the frequency domain.

주기적인 원형 2D-격자의 회절에 대한 모드 전송선로 이론 (Modal Transmission-Line Theory for Optical Diffraction of Periodic Circular 2D-Grating)

  • 호광춘
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.247-252
    • /
    • 2019
  • 다층 주기 구조에 의한 광 신호의 회절 특성은 기본 격자구조와 연계된 Fourier 확장을 사용하여 2D 공간에서 공식화 된다. 그때 각 층에서의 필드들은 특성 모드에 의하여 표현되며, 완전한 해는 적절한 경계 값 문제에 의존하는 모드 전송선로이론(MTLT)을 사용하여 정확하게 얻을 수 있다. 이러한 해석법은 일반적으로 다층 구조에 평행 또는 수직 방향에 따라 광학 특성을 갖는 임의의 형태의 유전체 성분을 포함하는 모든 주기적 격자들을 처리할 수 있다. 본 논문은 간단한 주기적인 원형 2D-구조에 대하여 과거에 보고된 데이터와 비교하여 현 해석법을 설명하였다. 또한 제시한 해석법은 가능한 표준 형태와 높은 유전율을 가지는 복수의 주기적인 영역을 포함하는 매우 복잡한 구조들에 대하여 쉽게 적용할 수 있다.

A Short Wavelength Coplanar Waveguide Employing Periodic 3D Coupling Structures on Silicon Substrate

  • Yun, Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.118-120
    • /
    • 2016
  • A coplanar waveguide employing periodic 3D coupling structures (CWP3DCS) was developed for application in miniaturized on-chip passive components on silicon radio frequency integrated circuits (RFIC). The CWP3DCS showed the shortest wavelength of all silicon-based transmission line structures that have been reported to date. Using CWP3DCS, a highly miniaturized impedance transformer was fabricated on silicon substrate, and the resulting device showed good RF performance in a broad band from 4.6 GHz to 28.6 GHz. The device as was 0.04 mm2 in size, which is only 0.74% of the size of the conventional transformer on silicon substrate.

2 차원 광결정의 실공간 밴드구조 계산 (A Real-Space Band-Structure Calculation of 2D Photonic Crystals)

  • 전석기;조영삼;임세영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1089-1093
    • /
    • 2003
  • The moving least square (MLS) basis is implemented for the real-space band-structure calculation of 2D photonic crystals. The value-periodic MLS shape function is thus used in order to represent the periodicity of crystal lattice. Any periodic function can properly be reproduced using this shape function. Matrix eigenequations, derived from the macroscopic Maxwell equations, are then solved to obtain photonic band structures. Through numerical examples of several lattice structures, the MLS-based method is proved to be a promising scheme for predicting band gaps of photonic crystals.

  • PDF

Singularity-Circumvented Computation of Green's Functions for 2D Periodic Structures in Homogeneous Medium

  • Kahng, Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • 제7권2호
    • /
    • pp.59-63
    • /
    • 2007
  • This paper suggests a novel method to efficiently calculate the spatial-domain Green's functions of 2D electromagnetic problems Briefly speaking, this method combines spectral and spatial domain calculation schemes and prevents the Green's functions from poor convergence due to the singularities that complicate the process of the Method of Moment(MoM) applications For the validation of this proposed method, fields will be evaluated along the spatial distance including zero distance for 2D free-space and periodic homogeneous geometry The numerical results show the validity of the prosed method and correspondng physics.

특이점이 제거된 2 차원 단일매질 주기구조에 대한 그린함수의 제안 (Proposal of Singularity-Circumvented Green's Functions for 2D Periodic Structures in Homogeneous Medium)

  • 강승택;김형석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.133-134
    • /
    • 2006
  • In this paper, a novel method is presented for efficient calculation of the spatial-domain Green's functions of 2D electromagnetic problems. This method combines spectral and spatial domain calculation schemes and prevents the Green's functions from diverging at the singularities that complicate the process of the Method of Moment(MoM) application. For the validation of this proposed method, fields will be evaluated along the spatial distance including zero distance for 2D free-space and periodic homogeneous geometry. The numerical results show the validity of the prosed method and correspondng physics.

  • PDF

광자결정 제작을 위한 홀로그라피 공정 연구 (A Study on the Holographic Process for Photonic Crystal Fabrication)

  • 여종빈;윤상돈;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.726-730
    • /
    • 2007
  • Two dimensional photonic crystals (2D PCs) have been fabricated by a double exposure holographic method using a He-Cd laser with a wavelength of 442nm. The arrays of the 2D PCs exhibit variable lattice structures from square to triangle according to a change of rotating angle $({\gamma})$ for double exposure beams. In addition, the period and filling factor of PCs as well as the forms (dot or antidot) could be controlled by experimental conditions. $A l.18-{\mu}m-thick$ resist was spin-coated on Si substrate and the 1st holographic exposure was carried out at incident angle $({\theta})$ of $11^{\circ}$. Then the sample was rotated to ${\gamma}=45^{\circ}{\sim}90^{\circ}$ and the 2nd holographic process was performed at ${\theta}=11^{\circ}$. The variation of diffraction efficiency during the exposure process was observed using a He-Ne laser in real time. The images of 2D PCs prepared were analyzed by SEM and AFM. We believe that the double holographic method is a tool suitable to realize the 2D PCs with a periodic array of large area.

Toward the computational rheometry of filled polymeric fluids

  • Hwang, Wook-Ryol;Hulsen Martien A.
    • Korea-Australia Rheology Journal
    • /
    • 제18권4호
    • /
    • pp.171-181
    • /
    • 2006
  • We present a short review for authors' previous work on direct numerical simulations for inertialess hard particle suspensions formulated either with a Newtonian fluid or with viscoelastic polymeric fluids to understand the microstructural evolution and the bulk material behavior. We employ two well-defined bi-periodic domain concepts such that a single cell problem with a small number of particles may represent a large number of repeated structures: one is the sliding bi-periodic frame for simple shear flow and the other is the extensional bi-periodic frame for planar elongational flow. For implicit treatment of hydrodynamic interaction between particle and fluid, we use the finite-element/fictitious-domain method similar to the distributed Lagrangian multiplier (DLM) method together with the rigid ring description. The bi-periodic boundary conditions can be effectively incorportated as constraint equations and implemented by Lagrangian multipliers. The bulk stress can be evaluated by simple boundary integrals of stresslets on the particle boundary in such formulations. Some 2-D example results are presented to show effects of the solid fraction and the particle configuration on the shear and elongational viscosity along with the micro-structural evolution for both particles and fluid. Effects of the fluid elasticity has been also presented.

Bandwidth Enhancement for SSN Suppression Using a Spiral-Shaped Power Island and a Modified EBG Structure for a ${\lambda}$/4 Open Stub

  • Kim, Bo-Bae;Kim, Dong-Wook
    • ETRI Journal
    • /
    • 제31권2호
    • /
    • pp.201-208
    • /
    • 2009
  • This paper proposes a spiral-shaped power island structure that can effectively suppress simultaneous switching noise (SSN) when the power plane drives high-speed integrated circuits in a small area. In addition, a new technique is presented which greatly improves the resonance peaks in a stopband by utilizing ${\lambda}$/4 open stubs on a conventional periodic electromagnetic bandgap (EBG) power plane. Both proposed structures are simulated numerically and experimentally verified using commercially available 3D electromagnetic field simulation software. The results demonstrate that they achieve better SSN suppression performance than conventional periodic EBG structures.

  • PDF