• 제목/요약/키워드: 2D Imaging

검색결과 1,174건 처리시간 0.027초

Trinocular 영상을 이용한 3D 얼굴 모델 자동 생성 (Automatic Generation of 3D Face Model from Trinocular Images)

  • 이광도;안상철;권용무;고한석;김형곤
    • 전자공학회논문지S
    • /
    • 제36S권7호
    • /
    • pp.104-115
    • /
    • 1999
  • 본 논문은 세 개의 카메라로부터 얻어진 영상에서 표면 깊이 정보를 재구성하여 얼굴의 3차원 모델을 생성하는 효율적인 방법을 제안한다. 논문에서는 Trinocular 영상을 사용하여 binocular 영상 사용 시 발생하는 폐색 영역 문제와 깊이 해상도 한계를 개선하였다. 또한, MPC_MBS (Matching Pixel Count Multiple Baseline Stereo) 유사도 측정 방법을 제안하여 영상 정합 시 발생하는 Boundary overreach 현상을 줄이고 정합의 정확도와 정밀도를 개선하였다. 이 방법은 정합 때 발생하는 중복 계산을 제거함으로써 계산 시간도 줄일 수 있다. 모델 생성 시에는 추출된 변위 정보를 2차원 보간에 의해 소수점 단위까지 확장하여 연속적인 표면 깊이 정보를 추출하였고, 이로부터 일정 간격의 초기 삼각형 매쉬 모델을 생성하였다. 또한 삼각형 매쉬 모델의 데이터 크기를 줄이기 위하여 사용자가 지정하는 오차 이내에서 같은 평면으로 근사화 되는 꼭지점을 병합하는 알고리듬을 제안하여 효율적인 얼굴 모델 생성이 이루어지도록 하였다.

  • PDF

POLAR EXPONENTIAL GRID와 장방형격자 영상시스템의 영상분해도 및 영상처리능력 비교 (A Comparison of System Performances Between Rectangular and Polar Exponential Grid Imaging System)

  • Jae Kwon Eem
    • 전자공학회논문지B
    • /
    • 제31B권2호
    • /
    • pp.69-79
    • /
    • 1994
  • The conventional machine vision system which has uniform rectangular grid requires tremendous amount of computation for processing and analysing an image especially in 2-D image transfermations such as scaling, rotation and 3-D reconvery problem typical in robot application environment. In this study, the imaging system with nonuiformly distributed image sensors simulating human visual system, referred to as Ploar Exponential Grid(PEG), is compared with the existing conventional uniform rectangular grid system in terms of image resolution and computational complexity. By mimicking the geometric structure of the PEG sensor cell, we obtained PEG-like images using computer simulation. With the images obtained from the simulation, image resolution of the two systems are compared and some basic image processing tasks such as image scaling and rotation are implemented based on the PEG sensor system to examine its performance. Furthermore Fourier transform of PEG image is described and implemented in image analysis point of view. Also, the range and heading-angle measurement errors usually encountered in 3-D coordinates recovery with stereo camera system are claculated based on the PEG sensor system and compared with those obtained from the uniform rectangular grid system. In fact, the PEC imaging system not only reduces the computational requirements but also has scale and rotational invariance property in Fourier spectrum. Hence the PEG system has more suitable image coordinate system for image scaling, rotation, and image recognition problem. The range and heading-angle measurement errors with PEG system are less than those of uniform rectangular rectangular grid system in practical measurement range.

  • PDF

지하 구조 영상화를 위한 3차원 탄성파 자료처리시스템 개발 (3-D seismic data processing system for underground investigation)

  • 신동훈;지준;이두성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.585-592
    • /
    • 2000
  • Primary purpose of the system developed in this study is 3-D seismic data processing system for subsurface structure imaging and this system is developed in PC based on Linux for lower-cost computer. Basic data processing modules are originated from SU (Seismic Unix) which is widely used in 2-D seismic data processing and auxilious modules are developed for 3-D data processing. The system which is constructed by using these data processing modules is designed to GUI (Graphic User Interface) in order that one can easily control and for this purpose, GTK (Gimp Tool KiT) conventionally adapted in producing Linux application.

  • PDF

Towards Routine Clinical Use of Radial Stack-of-Stars 3D Gradient-Echo Sequences for Reducing Motion Sensitivity

  • Block, Kai Tobias;Chandarana, Hersh;Milla, Sarah;Bruno, Mary;Mulholland, Tom;Fatterpekar, Girish;Hagiwara, Mari;Grimm, Robert;Geppert, Christian;Kiefer, Berthold;Sodickson, Daniel K.
    • Investigative Magnetic Resonance Imaging
    • /
    • 제18권2호
    • /
    • pp.87-106
    • /
    • 2014
  • Purpose : To describe how a robust implementation of a radial 3D gradient-echo sequence with stack-of-stars sampling can be achieved, to review the imaging properties of radial acquisitions, and to share the experience from more than 5000 clinical patient scans. Materials and Methods: A radial stack-of-stars sequence was implemented and installed on 9 clinical MR systems operating at 1.5 and 3 Tesla. Protocols were designed for various applications in which motion artifacts frequently pose a problem with conventional Cartesian techniques. Radial scans were added to routine examinations without selection of specific patient cohorts. Results: Radial acquisitions show significantly lower sensitivity to motion and allow examinations during free breathing. Elimination of breath-holding reduces failure rates for non-compliant patients and enables imaging at higher resolution. Residual artifacts appear as streaks, which are easy to identify and rarely obscure diagnostic information. The improved robustness comes at the expense of longer scan durations, the requirement for fat suppression, and the nonexistence of a time-to-center value. Care needs to be taken during the configuration of receive coils. Conclusion: Routine clinical use of radial stack-of-stars sequences is feasible with current MR systems and may serve as substitute for conventional fat-suppressed T1-weighted protocols in applications where motion is likely to degrade the image quality.

3-D High Resolution Ultrasonic Transmission Tomography and Soft Tissue Differentiation

  • Kim Tae-Seong
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권1호
    • /
    • pp.55-63
    • /
    • 2005
  • A novel imaging system for High-resolution Ultrasonic Transmission Tomography (HUTT) and soft tissue differentiation methodology for the HUTT system are presented. The critical innovation of the HUTT system includes the use of sub-millimeter transducer elements for both transmitter and receiver arrays and multi-band analysis of the first-arrival pulse. The first-arrival pulse is detected and extracted from the received signal (i.e., snippet) at each azimuthal and angular location of a mechanical tomographic scanner in transmission mode. Each extracted snippet is processed to yield a multi-spectral vector of attenuation values at multiple frequency bands. These vectors form a 3-D sinogram representing a multi-spectral augmentation of the conventional 2-D sinogram. A filtered backprojection algorithm is used to reconstruct a stack of multi-spectral images for each 2-D tomographic slice that allow tissue characterization. A novel methodology for soft tissue differentiation using spectral target detection is presented. The representative 2-D and 3-D HUTT images formed at various frequency bands demonstrate the high-resolution capability of the system. It is shown that spherical objects with diameter down to 0.3㎜ can be detected. In addition, the results of soft tissue differentiation and characterization demonstrate the feasibility of quantitative soft tissue analysis for possible detection of lesions or cancerous tissue.

삼각 섬유성 연골(TFCC) 손상 환자의 자기공명영상 검사 시 Fat Suppressed 3D FSPGR T1 강조 기법에 대한 Fat Suppressed Isotropic 3D FSE T1 강조 기법의 비교 분석 및 유용성에 관한 평가 (The Comparative Analysis Study and Usability Assessment of Fat Suppressed 3D FSPGR T1 Technique and Fat Suppressed Isotropic 3D FSE T1 Technique when Examining MRI of Patient with Triangular Fibrocartilage Complex (TFCC) Tear)

  • 강성진;조용근;이성수
    • 한국자기학회지
    • /
    • 제26권3호
    • /
    • pp.105-114
    • /
    • 2016
  • 삼각 섬유성 연골(TFCC) 손상 환자의 평가를 위하여 fat suppressed 3D fast spoiled gradient recalled T1 기법과 fat suppressed Isotropic 3D fast spin echo T1 기법을 이용하여 영상을 획득하였다. 정량적 평가를 위해 각각의 영상에서 signal to noise ratio 및 contrast to noise ratio 값을 측정하고, Mann-Whitney U 검정으로 두 기법 간의 통계적 유의성을 검증하였다. 또한 정성적 평가를 위해 영상의학의 2명이 각각의 영상을 관찰하여, TFCC의 형태, 영상 내 인공음영, 병변의 묘사 정도의 3가지 항목을 선정한 후 이를 4점 척도(0: 진단 불가, 1: 부족함, 2: 충분함, 3: 좋음)로 평가하였고, Kappa-value 검정을 이용하여 두 관찰자 간의 일치도 검증을 하였다. 영상획득에는 3.0 Tesla MR 장비와 8-channel RF coil을 사용하였다. 정량적 평가 결과, 모든 영상 단면에서 signal to noise ratio 및 contrast to noise ratio 값이 Isotropic 3D fast spin echo T1 기법이 높게 나타났으며, Mann-Whitney U 검정을 이용한 두 영상기법 간의 검증도 통계적으로도 유의하였다(p < 0.05). 정성적 평가 결과, 관찰자 1, 2 모두에서 Isotropic 3D fast spin echo T1 기법의 평가 결과가 더 높게 나타났으며, Kappa-value 검증을 이용한 두 관찰자 간 평가 결과의 일치도 검증도 통계적으로 유의하였다(p < 0.05). 결론적으로 TFCC 손상 환자의 자기공명영상 검사 시 fat suppressed Isotropic 3D fast spin echo T1 기법의 적용은 TFCC 병변의 감별에 보다 유용한 진단적 정보를 제공 할 수 있을 것이라 생각된다.

자궁경부 영상에서의 라디오믹스 기반 판독 불가 영상 분류 알고리즘 연구 (A Radiomics-based Unread Cervical Imaging Classification Algorithm)

  • 김고은;김영재;주웅;남계현;김수녕;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권5호
    • /
    • pp.241-249
    • /
    • 2021
  • Recently, artificial intelligence for diagnosis system of obstetric diseases have been actively studied. Artificial intelligence diagnostic assist systems, which support medical diagnosis benefits of efficiency and accuracy, may experience problems of poor learning accuracy and reliability when inappropriate images are the model's input data. For this reason, before learning, We proposed an algorithm to exclude unread cervical imaging. 2,000 images of read cervical imaging and 257 images of unread cervical imaging were used for this study. Experiments were conducted based on the statistical method Radiomics to extract feature values of the entire images for classification of unread images from the entire images and to obtain a range of read threshold values. The degree to which brightness, blur, and cervical regions were photographed adequately in the image was determined as classification indicators. We compared the classification performance by learning read cervical imaging classified by the algorithm proposed in this paper and unread cervical imaging for deep learning classification model. We evaluate the classification accuracy for unread Cervical imaging of the algorithm by comparing the performance. Images for the algorithm showed higher accuracy of 91.6% on average. It is expected that the algorithm proposed in this paper will improve reliability by effectively excluding unread cervical imaging and ultimately reducing errors in artificial intelligence diagnosis.

자기공명영상을 이용한 복숭아 및 씨의 부피 측정과 3차원 가시화 (Peach & Pit Volume Measurement and 3D Visualization using Magnetic Resonance Imaging Data)

  • 김철수
    • Journal of Biosystems Engineering
    • /
    • 제27권3호
    • /
    • pp.227-234
    • /
    • 2002
  • This study was conducted to nondestructively estimate the volumetric information of peach and pit and to visualize the 3D information of internal structure from magnetic resonance imaging(MRI) data. Bruker Biospec 7T spectrometer operating at a proton reosonant frequency of 300 MHz was used for acquisition of MRI data of peach. Image processing algorithms and visualization techniques were implemented by using MATLAB (Mathworks) and Visualization Toolkit(Kitware), respectively. Thresholding algorithm and Kohonen's self organizing map(SOM) were applied to MRI data fur region segmentation. Volumetric information were estimated from segemented images and compared to the actual measurements. The average prediction errors of peach and pit volumes were 4.5%, 26.1%, respectively for the thresholding algorithm. and were 2.1%, 19.9%. respectively for the SOM. Although we couldn't get the statistically meaningful results with the limited number of samples, the average prediction errors were lower when the region segmentation was done by SOM rather than thresholding. The 3D visualization techniques such as isosurface construction and volume rendering were successfully implemented, by which we could nondestructively obtain the useful information of internal structures of peach.

Epipolar 기하학을 이용한 2차원 투영 데이터의 3차원 표현에 관한 연구 (A Study on the 3D Representation of 2D Projection Data using Epipolar Geometry)

  • 유선국;;김남현;김용욱;김희중
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권5호
    • /
    • pp.212-219
    • /
    • 2002
  • In this paper, the epipolar geometry, genera17y used as a pin-hole camera model, is newly adapted to our proposed method that enables the affine reconstruction of the 3D object from two projected views. The proposed method models the projective projection of inherent X-ray imaging system, obviates the need to attach artifirially constructed material on the body, and requires none of the prior-knowledge regarding to intrinsic and extrinsic parameters of two X-ray imaging systems. The optimum numerical solution is obtained by applying the least mean square estimator to corresponding points on two projected X-ray planes. The performance of this proposed method is Quantitatively analyzed using computer synthesized model of Cochlear implantation electrodes. In simulated experiments, the propnsed method is insensitive to the added random noise, the scaling factor change, the center point change, and rotational angular change between two projection planes, as well as enables the stable 3D reconstruction in least square sense even in worst testing cases.

An integrated elastomer substrate with a lens array and pixel elements for three-dimensional liquid crystal displays

  • Hong, Jong-Ho;Kim, Yeun-Tae;Kim, Yun-Hee;Lee, Byoung-Ho;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • 제13권2호
    • /
    • pp.55-59
    • /
    • 2012
  • In this paper, a concept of an integrated elastomer substrate for a three-dimensional (3D) liquid crystal display based on the integral-imaging method is presented. The elemental lens array and columnar spacers were integrated into one of the two substrates, an elastomer substrate, through an imprinting process. The integrated elastomer substrate was capable of maintaining the uniform liquid crystal (LC) cell gap and promoting homeotropic LC alignment without any surface treatment. The monolithic approach reported herein will provide a key component for 3D displays with enhanced portability through a more than 40% weight reduction compared with the conventional integral-imaging method.