Towards Routine Clinical Use of Radial Stack-of-Stars 3D Gradient-Echo Sequences for Reducing Motion Sensitivity |
Block, Kai Tobias
(Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine)
Chandarana, Hersh (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) Milla, Sarah (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) Bruno, Mary (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) Mulholland, Tom (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) Fatterpekar, Girish (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) Hagiwara, Mari (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) Grimm, Robert (Pattern Recognition Lab, University of Erlangen-Nuremberg) Geppert, Christian (Siemens Medical Solutions Inc.) Kiefer, Berthold (Siemens AG Healthcare MR) Sodickson, Daniel K. (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) |
1 | Nishimura DG, Jackson JI, Pauly JM. On the nature and reduction of the displacement artifact in flow images. Magn Reson Med 1991;22:481-492 DOI |
2 | Chandarana H, Block KT, Rosenkrantz AB, et al. Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Invest Radiol 2011;46:648-653 DOI |
3 | Azevedo RM, de Campos RO, Ramalho M, Here′dia V, Dale BM, Semelka RC. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol 2011;197:650-657 DOI |
4 | Chandarana H, Block KT, Winfeld MJ, et al. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI. Eur Radiol 2014;24:320-326 DOI |
5 | Wu X, Raz E, Block KT, et al. Contrast-enhanced radial 3D fatsuppressed T1-weighted gradient-echo (Radial-VIBE) sequence: a viable and potentially superior alternative to conventional fatsuppressed contrast-enhanced T1-weighted studies of the head and neck. Am J Roentgenol 2014:in press |
6 | Chandarana H, Heacock L, Rakheja R, et al. Pulmonary nodules in patients with primary malignancy: comparison of hybrid PET/MR and PET/CT imaging. Radiology 2013;268:874-881 DOI |
7 | Bamrungchart S, Tantaway EM, Midia EC, et al. Free breathing three-dimensional gradient echo-sequence with radial data sampling (radial 3D-GRE) examination of the pancreas: Comparison with standard 3D-GRE volumetric interpolated breathhold examination (VIBE). J Magn Reson Imaging 2013;38:1572-1577 DOI |
8 | Bernstein MA, King KF, Xiaohong JZ. Handbook of MRI pulse sequences. Elsevier Academic Press, Waltham, 2004 |
9 | Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE T Med Imaging 2007;26:68-76 DOI |
10 | Block KT. Advanced methods for radial data sampling in magnetic resonance imaging. SUB University of Goettingen. http://webdoc.sub.gwdg.de/diss/2008/block/block.pdf. Published September 16, 2008. Accessed January 9, 2014 |
11 | Ramachandran GN, Lakshminarayanan AV. Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc Natl Acad Sci USA 1971;68:2236-2240 DOI ScienceOn |
12 | Beatty PJ, Nishimura DG, Pauly JM. Rapid gridding reconstruction with a minimal oversampling ratio. IEEE T Med Imaging 2005;24:799-808 DOI |
13 | Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding. IEEE T Med Imaging 1991;10:473-478 DOI ScienceOn |
14 | Peters DC, Korosec FR, Grist TM, et al. Undersampled projection reconstruction applied to MR angiography. Magn Reson Med 2000;43:91-101 DOI |
15 | Alley MT, Glover GH, Pelc NJ. Gradient characterization using a Fourier-transform technique. Magn Reson Med 1998;39:581-587 DOI ScienceOn |
16 | Peters DC, Derbyshire JA, McVeigh ER. Centering the projection reconstruction trajectory. Magn Reson Med 2003;50:1-6 DOI |
17 | Block KT, Uecker M. Simple method for adaptive gradientdelay compensation in radial MRI. In: Proceedings of the 19th scientific meeting, International Society for Magnetic Resonance in Medicine 2011, Montreal, p 2816 |
18 | Brodsky EK, Holmes JH, Yu H, Reeder SB. Generalized k-space decomposition with chemical shift correction for non-Cartesian water-fat imaging. Magn Reson Med 2008;59:1151-1164 DOI |
19 | Xue Y, Yu J, Kang HS, Englander S, Rosen MA, Song HK. Automatic coil selection for streak artifact reduction in radial MRI. Magn Reson Med 2012;67:470-476 DOI |
20 | Pruessmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651 DOI ScienceOn |
21 | Seiberlich N, Breuer FA, Ehses P, et al. Using the GRAPPA operator and the generalized sampling theorem to reconstruct undersampled non-Cartesian data. Magn Reson Med 2009;61:705-715 DOI |
22 | Harvey JA, Hendrick RE, Coll JM, Nicholson BT, Burkholder BT, Cohen MA. Breast MR imaging artifacts: how to recognize and fix them. Radiographics 2007;27:S131-145 DOI |
23 | Song HK, Dougherty L. Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution. Magn Reson Med 2004;52:815-824 DOI |
24 | Altbach MI, Bilgin A, Li Z, Clarkson EW, Trouard TP, Gmitro AF. Processing of radial fast spin-echo data for obtaining T2 estimates from a single k-space data set. Magn Reson Med 2005;54:549-559 DOI |
25 | Feng L, Grimm R, Block KT, et al. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 2013:Epub ahead of print, DOI: 10.1002/mrm.24980 |
26 | Chandarana H, Feng L, Block KT, et al. Free-breathing contrastenhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging and golden-angle radial sampling. Invest Radiol 2013;48:10-16 DOI |
27 | Grimm R, Block KT, Hutter J, et al. Self-gating reconstructions of motion and perfusion for free-breathing T1-weighted DCEMRI of the thorax using 3D stack-of-stars GRE imaging. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine 2012, Melbourne, p 3814 |
28 | Lin W, Guo J, Rosen MA, Song HK. Respiratory motioncompensated radial dynamic contrast-enhanced (DCE)-MRI of chest and abdominal lesions. Magn Reson Med 2008;60:1135-1146 DOI |
29 | Meyer CH, Hu BS, Nishimura DG, Macovski A. Fast spiral coronary artery imaging. Magn Reson Med 1992;28:202-213 DOI |
30 | Kumar A, Welti D, Ernst RR. NMR Fourier zeugmatography. J Magn Reson 1975;18:69-83 |
31 | Cremillieux Y, Briguet A, Deguin A. Projection-reconstruction methods: fast imaging sequences and data processing. Magn Reson Med 1994;32:23-32 DOI |
32 | Mistretta CA, Wieben O, Velikina J, et al. Highly constrained backprojection for time-resolved MRI. Magn Reson Med 2006;55:30-40 DOI ScienceOn |
33 | Du J, Carroll TJ, Brodsky E, et al. Contrast-enhanced peripheral magnetic resonance angiography using time-resolved vastly undersampled isotropic projection reconstruction. J Magn Reson Imaging 2004;20:894-900 DOI |
34 | Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Res Med 2007;58:1182-1195 DOI ScienceOn |
35 | Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999;42:963-969 DOI ScienceOn |