DOI QR코드

DOI QR Code

Towards Routine Clinical Use of Radial Stack-of-Stars 3D Gradient-Echo Sequences for Reducing Motion Sensitivity

  • Block, Kai Tobias (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) ;
  • Chandarana, Hersh (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) ;
  • Milla, Sarah (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) ;
  • Bruno, Mary (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) ;
  • Mulholland, Tom (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) ;
  • Fatterpekar, Girish (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) ;
  • Hagiwara, Mari (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine) ;
  • Grimm, Robert (Pattern Recognition Lab, University of Erlangen-Nuremberg) ;
  • Geppert, Christian (Siemens Medical Solutions Inc.) ;
  • Kiefer, Berthold (Siemens AG Healthcare MR) ;
  • Sodickson, Daniel K. (Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine)
  • Received : 2014.04.02
  • Accepted : 2014.05.29
  • Published : 2014.06.30

Abstract

Purpose : To describe how a robust implementation of a radial 3D gradient-echo sequence with stack-of-stars sampling can be achieved, to review the imaging properties of radial acquisitions, and to share the experience from more than 5000 clinical patient scans. Materials and Methods: A radial stack-of-stars sequence was implemented and installed on 9 clinical MR systems operating at 1.5 and 3 Tesla. Protocols were designed for various applications in which motion artifacts frequently pose a problem with conventional Cartesian techniques. Radial scans were added to routine examinations without selection of specific patient cohorts. Results: Radial acquisitions show significantly lower sensitivity to motion and allow examinations during free breathing. Elimination of breath-holding reduces failure rates for non-compliant patients and enables imaging at higher resolution. Residual artifacts appear as streaks, which are easy to identify and rarely obscure diagnostic information. The improved robustness comes at the expense of longer scan durations, the requirement for fat suppression, and the nonexistence of a time-to-center value. Care needs to be taken during the configuration of receive coils. Conclusion: Routine clinical use of radial stack-of-stars sequences is feasible with current MR systems and may serve as substitute for conventional fat-suppressed T1-weighted protocols in applications where motion is likely to degrade the image quality.

Keywords

References

  1. Kumar A, Welti D, Ernst RR. NMR Fourier zeugmatography. J Magn Reson 1975;18:69-83
  2. Meyer CH, Hu BS, Nishimura DG, Macovski A. Fast spiral coronary artery imaging. Magn Reson Med 1992;28:202-213 https://doi.org/10.1002/mrm.1910280204
  3. Cremillieux Y, Briguet A, Deguin A. Projection-reconstruction methods: fast imaging sequences and data processing. Magn Reson Med 1994;32:23-32 https://doi.org/10.1002/mrm.1910320105
  4. Mistretta CA, Wieben O, Velikina J, et al. Highly constrained backprojection for time-resolved MRI. Magn Reson Med 2006;55:30-40 https://doi.org/10.1002/mrm.20772
  5. Du J, Carroll TJ, Brodsky E, et al. Contrast-enhanced peripheral magnetic resonance angiography using time-resolved vastly undersampled isotropic projection reconstruction. J Magn Reson Imaging 2004;20:894-900 https://doi.org/10.1002/jmri.20189
  6. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Res Med 2007;58:1182-1195 https://doi.org/10.1002/mrm.21391
  7. Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999;42:963-969 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
  8. Nishimura DG, Jackson JI, Pauly JM. On the nature and reduction of the displacement artifact in flow images. Magn Reson Med 1991;22:481-492 https://doi.org/10.1002/mrm.1910220255
  9. Chandarana H, Block KT, Rosenkrantz AB, et al. Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Invest Radiol 2011;46:648-653 https://doi.org/10.1097/RLI.0b013e31821eea45
  10. Azevedo RM, de Campos RO, Ramalho M, Here′dia V, Dale BM, Semelka RC. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol 2011;197:650-657 https://doi.org/10.2214/AJR.10.5881
  11. Chandarana H, Block KT, Winfeld MJ, et al. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI. Eur Radiol 2014;24:320-326 https://doi.org/10.1007/s00330-013-3026-4
  12. Wu X, Raz E, Block KT, et al. Contrast-enhanced radial 3D fatsuppressed T1-weighted gradient-echo (Radial-VIBE) sequence: a viable and potentially superior alternative to conventional fatsuppressed contrast-enhanced T1-weighted studies of the head and neck. Am J Roentgenol 2014:in press
  13. Chandarana H, Heacock L, Rakheja R, et al. Pulmonary nodules in patients with primary malignancy: comparison of hybrid PET/MR and PET/CT imaging. Radiology 2013;268:874-881 https://doi.org/10.1148/radiol.13130620
  14. Bamrungchart S, Tantaway EM, Midia EC, et al. Free breathing three-dimensional gradient echo-sequence with radial data sampling (radial 3D-GRE) examination of the pancreas: Comparison with standard 3D-GRE volumetric interpolated breathhold examination (VIBE). J Magn Reson Imaging 2013;38:1572-1577 https://doi.org/10.1002/jmri.24064
  15. Bernstein MA, King KF, Xiaohong JZ. Handbook of MRI pulse sequences. Elsevier Academic Press, Waltham, 2004
  16. Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE T Med Imaging 2007;26:68-76 https://doi.org/10.1109/TMI.2006.885337
  17. Block KT. Advanced methods for radial data sampling in magnetic resonance imaging. SUB University of Goettingen. http://webdoc.sub.gwdg.de/diss/2008/block/block.pdf. Published September 16, 2008. Accessed January 9, 2014
  18. Ramachandran GN, Lakshminarayanan AV. Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc Natl Acad Sci USA 1971;68:2236-2240 https://doi.org/10.1073/pnas.68.9.2236
  19. Beatty PJ, Nishimura DG, Pauly JM. Rapid gridding reconstruction with a minimal oversampling ratio. IEEE T Med Imaging 2005;24:799-808 https://doi.org/10.1109/TMI.2005.848376
  20. Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding. IEEE T Med Imaging 1991;10:473-478 https://doi.org/10.1109/42.97598
  21. Peters DC, Korosec FR, Grist TM, et al. Undersampled projection reconstruction applied to MR angiography. Magn Reson Med 2000;43:91-101 https://doi.org/10.1002/(SICI)1522-2594(200001)43:1<91::AID-MRM11>3.0.CO;2-4
  22. Alley MT, Glover GH, Pelc NJ. Gradient characterization using a Fourier-transform technique. Magn Reson Med 1998;39:581-587 https://doi.org/10.1002/mrm.1910390411
  23. Peters DC, Derbyshire JA, McVeigh ER. Centering the projection reconstruction trajectory. Magn Reson Med 2003;50:1-6 https://doi.org/10.1002/mrm.10501
  24. Block KT, Uecker M. Simple method for adaptive gradientdelay compensation in radial MRI. In: Proceedings of the 19th scientific meeting, International Society for Magnetic Resonance in Medicine 2011, Montreal, p 2816
  25. Brodsky EK, Holmes JH, Yu H, Reeder SB. Generalized k-space decomposition with chemical shift correction for non-Cartesian water-fat imaging. Magn Reson Med 2008;59:1151-1164 https://doi.org/10.1002/mrm.21580
  26. Xue Y, Yu J, Kang HS, Englander S, Rosen MA, Song HK. Automatic coil selection for streak artifact reduction in radial MRI. Magn Reson Med 2012;67:470-476 https://doi.org/10.1002/mrm.23023
  27. Pruessmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651 https://doi.org/10.1002/mrm.1241
  28. Seiberlich N, Breuer FA, Ehses P, et al. Using the GRAPPA operator and the generalized sampling theorem to reconstruct undersampled non-Cartesian data. Magn Reson Med 2009;61:705-715 https://doi.org/10.1002/mrm.21891
  29. Harvey JA, Hendrick RE, Coll JM, Nicholson BT, Burkholder BT, Cohen MA. Breast MR imaging artifacts: how to recognize and fix them. Radiographics 2007;27:S131-145 https://doi.org/10.1148/rg.27si075514
  30. Song HK, Dougherty L. Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution. Magn Reson Med 2004;52:815-824 https://doi.org/10.1002/mrm.20237
  31. Altbach MI, Bilgin A, Li Z, Clarkson EW, Trouard TP, Gmitro AF. Processing of radial fast spin-echo data for obtaining T2 estimates from a single k-space data set. Magn Reson Med 2005;54:549-559 https://doi.org/10.1002/mrm.20611
  32. Feng L, Grimm R, Block KT, et al. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 2013:Epub ahead of print, DOI: 10.1002/mrm.24980
  33. Chandarana H, Feng L, Block KT, et al. Free-breathing contrastenhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging and golden-angle radial sampling. Invest Radiol 2013;48:10-16 https://doi.org/10.1097/RLI.0b013e318271869c
  34. Grimm R, Block KT, Hutter J, et al. Self-gating reconstructions of motion and perfusion for free-breathing T1-weighted DCEMRI of the thorax using 3D stack-of-stars GRE imaging. In: Proceedings of the 20th scientific meeting, International Society for Magnetic Resonance in Medicine 2012, Melbourne, p 3814
  35. Lin W, Guo J, Rosen MA, Song HK. Respiratory motioncompensated radial dynamic contrast-enhanced (DCE)-MRI of chest and abdominal lesions. Magn Reson Med 2008;60:1135-1146 https://doi.org/10.1002/mrm.21740

Cited by

  1. Magnetic resonance imaging in lung: a review of its potential for radiotherapy vol.89, pp.1060, 2016, https://doi.org/10.1259/bjr.20150431
  2. Feasibility of self-gated isotropic radial late-phase MR imaging of the liver vol.27, pp.3, 2014, https://doi.org/10.1007/s00330-016-4433-0
  3. MRI-guided lung SBRT: Present and future developments vol.44, pp.None, 2017, https://doi.org/10.1016/j.ejmp.2017.02.003
  4. Preoperative T Staging of Potentially Resectable Esophageal Cancer: A Comparison between Free-Breathing Radial VIBE and Breath-Hold Cartesian VIBE, with Histopathological Correlation 1 vol.10, pp.3, 2014, https://doi.org/10.1016/j.tranon.2017.02.006
  5. 4D respiratory motion‐compensated image reconstruction of free‐breathing radial MR data with very high undersampling vol.77, pp.3, 2014, https://doi.org/10.1002/mrm.26206
  6. One‐second MRI of a three‐dimensional vocal tract to measure dynamic articulator modifications vol.46, pp.1, 2017, https://doi.org/10.1002/jmri.25561
  7. Self‐gated fetal cardiac MRI with tiny golden angle iGRASP: A feasibility study vol.46, pp.1, 2017, https://doi.org/10.1002/jmri.25599
  8. Free‐breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging vol.78, pp.2, 2017, https://doi.org/10.1002/mrm.26392
  9. Quantitative ultrashort echo time imaging for assessment of massive iron overload at 1.5 and 3 Tesla vol.78, pp.5, 2014, https://doi.org/10.1002/mrm.26592
  10. Adaptive bulk motion exclusion for improved robustness of abdominal magnetic resonance imaging vol.30, pp.11, 2017, https://doi.org/10.1002/nbm.3830
  11. Multifrequency reconstruction for frequency‐modulated bSSFP vol.78, pp.6, 2017, https://doi.org/10.1002/mrm.26630
  12. Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study vol.125, pp.3, 2014, https://doi.org/10.1016/j.radonc.2017.09.013
  13. Feasibility of free breathing Lung MRI for Radiotherapy using non-Cartesian k-space acquisition schemes vol.90, pp.1080, 2014, https://doi.org/10.1259/bjr.20170037
  14. Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique vol.48, pp.7, 2014, https://doi.org/10.1007/s00247-018-4127-7
  15. Feasibility of free-breathing dynamic contrast-enhanced MRI of gastric cancer using a golden-angle radial stack-of-stars VIBE sequence: comparison with the conventional contrast-enhanced breath-hold 3 vol.28, pp.5, 2018, https://doi.org/10.1007/s00330-017-5193-1
  16. Accelerated Parameter Mapping of Multiple-Echo Gradient-Echo Data Using Model-Based Iterative Reconstruction vol.37, pp.2, 2018, https://doi.org/10.1109/tmi.2017.2771504
  17. Fast Interleaved Multislice T1 Mapping: Model-Based Reconstruction of Single-Shot Inversion-Recovery Radial FLASH vol.2018, pp.None, 2014, https://doi.org/10.1155/2018/2560964
  18. Three-Dimensional Radial VIBE Sequence for Contrast-Enhanced Brain Imaging: An Alternative for Reducing Motion Artifacts in Restless Children vol.210, pp.4, 2018, https://doi.org/10.2214/ajr.17.18490
  19. Fundamentals of Compressed Sensing for MR Imaging vol.38, pp.3, 2014, https://doi.org/10.2463/jjmrm.2018-1655
  20. Rigid‐body motion correction of the liver in image reconstruction for golden‐angle stack‐of‐stars DCE MRI vol.79, pp.3, 2014, https://doi.org/10.1002/mrm.26782
  21. Multiecho pseudo‐golden angle stack of stars thermometry with high spatial and temporal resolution using k‐space weighted image contrast vol.79, pp.3, 2018, https://doi.org/10.1002/mrm.26797
  22. RACER‐GRASP: Respiratory‐weighted, aortic contrast enhancement‐guided and coil‐unstreaking golden‐angle radial sparse MRI vol.80, pp.1, 2014, https://doi.org/10.1002/mrm.27002
  23. Optimization and validation of accelerated golden‐angle radial sparse MRI reconstruction with self‐calibrating GRAPPA operator gridding vol.80, pp.1, 2014, https://doi.org/10.1002/mrm.27030
  24. Free‐breathing dynamic contrast‐enhanced MRI for assessment of pulmonary lesions using golden‐angle radial sparse parallel imaging vol.48, pp.2, 2014, https://doi.org/10.1002/jmri.25977
  25. 4D dose calculation for pencil beam scanning proton therapy of pancreatic cancer using repeated 4DMRI datasets vol.63, pp.16, 2014, https://doi.org/10.1088/1361-6560/aad43f
  26. Abdominal DCE-MRI reconstruction with deformable motion correction for liver perfusion quantification vol.45, pp.10, 2014, https://doi.org/10.1002/mp.13118
  27. Hybrid T2‐ and T1‐weighted radial acquisition for free‐breathing abdominal examination vol.80, pp.5, 2014, https://doi.org/10.1002/mrm.27200
  28. Cardiovascular magnetic resonance imaging of aorto-iliac and ilio-femoral vascular calcifications using proton density-weighted in-phase stack of stars vol.20, pp.None, 2014, https://doi.org/10.1186/s12968-018-0479-2
  29. The impact of 2D cine MR imaging parameters on automated tumor and organ localization for MR-guided real-time adaptive radiotherapy vol.63, pp.23, 2014, https://doi.org/10.1088/1361-6560/aae74d
  30. Rapid Imaging: Recent Advances in Abdominal MRI for Reducing Acquisition Time and Its Clinical Applications vol.20, pp.12, 2014, https://doi.org/10.3348/kjr.2018.0931
  31. 3D R2* mapping of the placenta during early gestation using free‐breathing multiecho stack‐of‐radial MRI at 3T vol.49, pp.1, 2019, https://doi.org/10.1002/jmri.26203
  32. Effect of k‐space‐weighted image contrast and ultrasound focus size on the accuracy of proton resonance frequency thermometry vol.81, pp.1, 2014, https://doi.org/10.1002/mrm.27383
  33. 4DMRI-based analysis of inter- and intrafractional pancreas motion and deformation with different immobilization devices vol.5, pp.2, 2014, https://doi.org/10.1088/2057-1976/aaf9ae
  34. Simple auto‐calibrated gradient delay estimation from few spokes using Radial Intersections (RING) vol.81, pp.3, 2014, https://doi.org/10.1002/mrm.27506
  35. Compressed Sensing Radial Sampling MRI of Prostate Perfusion: Utility for Detection of Prostate Cancer vol.290, pp.3, 2014, https://doi.org/10.1148/radiol.2018180556
  36. Multiresolution radial MRI to reduce IDLE time in pre-beam imaging on an MR-Linac (MR-RIDDLE) vol.64, pp.5, 2019, https://doi.org/10.1088/1361-6560/aafd6b
  37. A Study on the Image Comparison of 3D VANE XD Technique in T1 Weighted Images of Liver MRI with Free Breathing Technique as the Radial Percentage Parameter Changes vol.29, pp.1, 2019, https://doi.org/10.31159/ksmrt.2019.29.1.17
  38. Comparing the effectiveness and efficiency of various gating approaches for PBS proton therapy of pancreatic cancer using 4D-MRI datasets vol.64, pp.8, 2014, https://doi.org/10.1088/1361-6560/ab1175
  39. Simultaneous proton resonance frequency shift thermometry and T1 measurements using a single reference variable flip angle T1 method vol.81, pp.5, 2014, https://doi.org/10.1002/mrm.27643
  40. Synthetic 4D-CT of the thorax for treatment plan adaptation on MR-guided radiotherapy systems vol.64, pp.11, 2014, https://doi.org/10.1088/1361-6560/ab0dbb
  41. ReconSocket: a low-latency raw data streaming interface for real-time MRI-guided radiotherapy vol.64, pp.18, 2014, https://doi.org/10.1088/1361-6560/ab3e99
  42. Reconstruction techniques for cardiac cine MRI vol.10, pp.1, 2019, https://doi.org/10.1186/s13244-019-0754-2
  43. Respiratory Motion Detection and Correction for MR Using the Pilot Tone : Applications for MR and Simultaneous PET/MR Examinations vol.55, pp.3, 2020, https://doi.org/10.1097/rli.0000000000000619
  44. MR-MOTUS: model-based non-rigid motion estimation for MR-guided radiotherapy using a reference image and minimal k-space data vol.65, pp.1, 2020, https://doi.org/10.1088/1361-6560/ab554a
  45. The noise navigator: a surrogate for respiratory-correlated 4D-MRI for motion characterization in radiotherapy vol.65, pp.1, 2020, https://doi.org/10.1088/1361-6560/ab5c62
  46. Accelerated mono‐ and biexponential 3D‐T1ρ relaxation mapping of knee cartilage using golden angle radial acquisitions and compressed sensing vol.83, pp.4, 2020, https://doi.org/10.1002/mrm.28019
  47. Effect of respiratory motion on free‐breathing 3D stack‐of‐radial liver R2∗ relaxometry and improved quantification accuracy using self‐gating vol.83, pp.6, 2020, https://doi.org/10.1002/mrm.28052
  48. Simultaneous proton magnetic resonance fingerprinting and sodium MRI vol.83, pp.6, 2014, https://doi.org/10.1002/mrm.28073
  49. Bulk motion‐compensated DCE‐MRI for functional imaging of kidneys in newborns vol.52, pp.1, 2014, https://doi.org/10.1002/jmri.27021
  50. Clinical Implementation of a Free-Breathing, Motion-Robust Dynamic Contrast-Enhanced MRI Protocol to Evaluate Pleural Tumors vol.215, pp.1, 2020, https://doi.org/10.2214/ajr.19.21612
  51. High spatiotemporal resolution dynamic contrast-enhanced MRI improves the image-based discrimination of histopathology risk groups of peripheral zone prostate cancer: a supervised machine learning app vol.30, pp.9, 2014, https://doi.org/10.1007/s00330-020-06849-y
  52. Delayed contrast dynamics as marker of regional impairment in pulmonary fibrosis using 5D MRI - a pilot study vol.93, pp.1113, 2014, https://doi.org/10.1259/bjr.20190121
  53. Free‐breathing fat and R2* quantification in the liver using a stack‐of‐stars multi‐echo acquisition with respiratory‐resolved model‐based reconstruction vol.84, pp.5, 2014, https://doi.org/10.1002/mrm.28280
  54. Imaging Parameter Optimization of 3D Radial Stack-of-stars MRA with FID Sampling after Treatment of Cerebral Aneurysms with Metallic Devices vol.77, pp.6, 2021, https://doi.org/10.6009/jjrt.2021_jsrt_77.6.572
  55. Free‐Breathing Volumetric Liver R2* and Proton Density Fat Fraction Quantification in Pediatric Patients Using Stack‐of‐Radial MRI With Self‐Gating Motion Compensation vol.53, pp.1, 2021, https://doi.org/10.1002/jmri.27205
  56. A hierarchical model of abdominal configuration changes extracted from golden angle radial magnetic resonance imaging vol.66, pp.4, 2014, https://doi.org/10.1088/1361-6560/abd66e
  57. Model‐based reconstruction for simultaneous multi‐slice T1 mapping using single‐shot inversion‐recovery radial FLASH vol.85, pp.3, 2014, https://doi.org/10.1002/mrm.28497
  58. Free‐breathing radial imaging using a pilot‐tone radiofrequency transmitter for detection of respiratory motion vol.85, pp.5, 2021, https://doi.org/10.1002/mrm.28616
  59. Improved 3D real‐time MRI of speech production vol.85, pp.6, 2014, https://doi.org/10.1002/mrm.28651
  60. Task group 284 report: magnetic resonance imaging simulation in radiotherapy: considerations for clinical implementation, optimization, and quality assurance vol.48, pp.7, 2014, https://doi.org/10.1002/mp.14695
  61. DCE-MRI of esophageal carcinoma using star-VIBE compared with conventional 3D-VIBE vol.11, pp.1, 2014, https://doi.org/10.1038/s41598-021-03171-5
  62. Free-breathing 3D stack-of-radial MRI quantification of liver fat and R2* in adults with fatty liver disease vol.85, pp.None, 2022, https://doi.org/10.1016/j.mri.2021.10.016