• Title/Summary/Keyword: 28S rDNA sequence

Search Result 98, Processing Time 0.03 seconds

The Determination of the Partial 28S Ribosomal DNA Sequences and Rapid Detection of Phellinus linteus and Related species

  • Park, Hyung-Sik;Kim, Gi-Young;Nam, Byung-Hyouk;Lee, Sang-Joon;Lee, Jae-Dong
    • Mycobiology
    • /
    • v.30 no.2
    • /
    • pp.82-87
    • /
    • 2002
  • Species of Phellinus were known to harmful fungi causing white pocket rot and severe plant disease such as canker or heartrot in living trees in the West, but some species have been used to traditional medicines in the Orient for a long time. In this study the partial D1-D2 nucleotide sequences of 28S ribosomal DNA from 13 Phellinus strains were determined and compared with the sequences of 21 strains obtained from GenBank database. According to the neighbor-joining(NJ) method comparing the sequence data the phylogenetic tree was constructed. The phylogenetic tree displayed the presence of four groups. Group I includes P. ferreus, P. gilvus and P. johnsonianus, Group II contains P. laevigatus, P. conchatus and P. tremulae, Group III possesses P. linteus, P. weirianus, P. baumii, P. rhabarbarinus and P. igniarius, and Group IV comprises P. pini, P. chrysoloma. P. linteus and P. baumii, which were used mainly in traditional medicine, belong to the same group, but exactly speaking both were split into two different subgroups. To detect P. linteus only, we developed the PCR primer, D12HR. The primer showed the specific amplification of P linteus, which is permitted to medicinal mushroom in the East. The results make a potential to be incorporated in a PCR identification system that could be used for the rapid identification of this species from its related species, P. linteus especially.

Nocardioides tritolerans sp. nov., Isolated from Soil in Bigeum Island, Korea

  • Dastager, Syed G.;Lee, Jae-Chan;Ju, Yoon-Jung;Park, Dong-Jin;Kim, Chang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1203-1206
    • /
    • 2008
  • A Gram-positive strain designated as MSL-$14^T$ isolated from a soil sample collected from Bigeum Island, Korea, was subjected to polyphasic taxonomy. The isolate was strictly aerobic. Cells were short rods and motile. Optimum growth temperature and pH was 28$^{\circ}C$ and 7.0, respectively. It was characterized chemotaxonomically as having a cell-wall peptidoglycan type based on LL-2,6-diaminopimelic acid and MK-$8(H_4)$ as the predominant menaquinone. The major fatty acids were iso-$C_{16:0}$, $C_{17:1}$ omega8c, and $C_{18:1}$ omega9c. The G+C content was 67.6 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain MSL-$14^T$ is affiliated to the genus Nocardioides and formed a distinct lineage within the genus. MSL-$14^T$ showed highest sequence similarity to Nocardioides aestuarii JCM $12125^T$, having a similarity of 96.5%. Based on the 16S rRNA gene sequence divergence and phenotypic characteristics, it is proposed that strain MSL-$14^T$ should be classified as representing a novel member of the genus Nocardioides, for which we propose the name Nocardioides tritolerans sp. novo The type strain is strain MSL-$14^T$ (=KCTC $19289^T$=DSM $19320^T$).

Phylogenetic Status of an Undiscovered Zygomycete Species, Syncephalastrum monosporum, in Korea

  • Duong, Tham Thi;Nguyen, Thi Thuong Thuong;Jeon, Sun Jeong;Lee, Hyang Burm
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.371-376
    • /
    • 2016
  • During a survey of undiscovered taxa in Korea, two zygomycete fungal isolates, EML-BT5-1 and EML-BT5-2, were isolated from the seed of a pumpkin (Cucurbita pepo) fruit in Korea. Based on their morphological characteristics and a sequence analysis of four genes, ITS1-5.8S-ITS2, 18S, 28S rDNA, and EF-$1{\alpha}$, the isolates were confirmed to be Syncephalastrum monosporum in the family Syncephalastraceae. To our knowledge, the zygomycete fungal species S. monosporum has not been previously described in Korea.

Characterization of the Thermophilic Bacterium Geobacillus sp. Strain GWE1 Isolated from a Sterilization Oven

  • Correa-Llanten, Daniela;Larrain-Linton, Juanita;Munoz, Patricio A.;Castro, Miguel;Boehmwald, Freddy;Blamey, Jenny M.
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.278-283
    • /
    • 2013
  • A gram-positive, rod-shaped, spore-forming, motile thermophilic bacterium was isolated from a sterilization oven. The microorganism GWE1, formally named Geobacillus wiegelii identified as a member of the genus Geobacillus. GWE1 grew under aerobic conditions of between $60-80^{\circ}C$ (optimum $670^{\circ}C$), in a pH range of 3.0-8.0 (optimum $pH^{70^{\circ}C}$ 5.8), and between 0 and 2 M NaCl (optimum 0.3 M). The membrane polar lipids were dominated by branched saturated fatty acids, which included as the major constituents; iso-15:0 (13.3%), 16:1(${\omega}7$) (12.8%), 16:0 (28.5%), iso-17:0 (13.5%) and anteiso-17:0 (12.3%). The DNA G+C content was 47.2 mol% (determined by HPLC). The 16S rRNA gene sequence of GWE1 showed a high similarity with Geobacillus caldoxylosilyticus (97%). However, the level of DNA-DNA relatedness was only 58%. These data suggest that GWE1 is probably a novel specie of the genus Geobacillus.

Molecular Variation and Distribution of Anopheles fluviatilis (Diptera: Culicidae) Complex in Iran

  • Naddaf, Saied Reza;Razavi, Mohammad Reza;Bahramali, Golnaz
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.3
    • /
    • pp.231-236
    • /
    • 2010
  • Anopheles fluviatilis James (Oiptera: Culicidae) is one of the known malaria vectors in south and southeastern Iran. Earlier ITS2 sequences analysis of specimens from Iran demonstrated only a single genotype that was identical to species Y in India, which is also the same as species T. We identified 2 haplotypes in the An. fluviatilis populations of Iran based on differences in nucleotide sequences of D3 domain of the 28S locus of ribosomal DNA (rDNA). Comparison of sequence data from 44 Iranian specimens with those publicly available in the Genbank database showed that all of the 288-D3 sequences from Kazeroun and Khesht regions in Fars Province were identical to the database entry representing species U in India. In other regions, all the individuals showed heterozygosity at the single nucleotide position, which identifies species U and T. It is argued that the 2 species may co-occur in some regions and hybridize; however, the heterozygosity in the 288-D3 locus was not reflected in ITS2 sequences and this locus for all individuals was identical to species T. This study shows that in a newly diverged species, like members of An. fluviatilis complex, a single molecular marker may not be sufficiently discriminatory to identify all the taxa over a vast geographical area. In addition, other molecular markers may provide more reliable information for species discrimination.

Isolation and Medium Development of the Actinomycetes, Streptomyces griseofuscus CNU-A91231, Inhibiting Phytopathogenic Fungi (식품병원성 곰팡이 성장을 저해하는 방선균 Streptomyces griseofuscus CNU-A91231의 분리 및 배지 조성)

  • Choi, Seung-Hyun;Son, Min-Jung;Kim, Sung-Han;Choi, Suk-Yul;Lee, Yoon-Hui;Choi, Jae-Eul;An, Gil-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.322-332
    • /
    • 2009
  • Five hundred strains of actinomycetes were screened for inhibitory activity against the phytopathogenic fungi; Alternaria alternata, Botryotinia fuckeliana, Colletotrichum acutatum, Colletotrichum gleosporioides, Corticium sasaki, Cylindrocarpon destructans, Fusarium oxysporium, Magnaporthe grisea, Phytophthora infestans, Phytium ultimum, and Thanatephorus cucumeris. The strain CNU-A91231 (Korea Agricultural Culture Collection #20938) showed a strong activity against the phytopathogenic fungi and it was identified as Streptomyces griseofuscus based on the sequence of 16s rDNA. Practical and simple media for the strain S. griseofuscus CNU-A91231 was developed at the conditions ($28^{\circ}C$ and pH 6 with aeration) for efficient bacterial growth. Alanine, glutamine, proline and ammonium ion were good nitrogen sources for the bacterium. Addition of the major salts including Na, Cl, Ca, P, K, and Mg into molasses did not increase the growth of S. griseofuscus. Addition of fertilizers containing amino acids significantly enhanced growth of the bacterium. The optimal medium was formulated as molasses + 1% of glutamate fermentation waste powder. All the conditions and components used in this study did not affect the antifungal activity of S. griseofuscus. The bacterium and the medium in this study can be used as a bio-antifungal agent for plant farming.

Temperature dependent 2,3-dihydroxybenzoic acid production in Acinetobacter sp. B-W (Acinetobacter sp. B-W의 온도 의존적 2,3-dihydroxybenzoic acid 생산)

  • Kim, Kyoung-Ja;Lee, Jae-Hun;Yang, Yong-Joon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.249-255
    • /
    • 2015
  • A soil microorganism producing iron chelator (siderophore) under low iron stress (up to $2{\mu}M$ of iron) was identified as Acinetobacter sp. B-W by 16S rDNA sequence analysis, biochemical-, physiological tests and morphological analysis using electron microscope. Catechol nature of siderophore was detected by Arnow test. Although optimal cell growth was identified at $36^{\circ}C$ in iron-limited media, significant quantities of siderophore were produced only at $28^{\circ}C$. Biosynthesis of siderophore was strongly inhibited by growth at $36^{\circ}C$. Production of siderophore was completely inhibited by $10{\mu}M\;FeCl_3$. Iron chelator produced from Acinetobacter sp. B-W was purified from supernatant using butanol extraction, Sephadex LH-20 column chromatography and HPLC. Purified sideropore was identified as 2,3-dihydroxybenzoic acid by HPLC, TLC and IR analysis.

Biodegradation of Cutting Oil by Pseudomonas aeruginosa KS47 (Pseudomonas aeruginosa KS47에 의한 절삭유의 생물학적 분해)

  • Kim, Lan-Hee;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.22-28
    • /
    • 2008
  • Cutting oils are emulsionable fluids widely used in metal working processes. Their composition is mineral oil, water, and additives (fatty acids, surfactants, biocides, etc.) generating a toxic waste after a long use. Cutting oils also affect colour, taste and odour of water, making it undesirable for domestic and industrial uses. In these days, conventional treatment methods as evaporation, membrane separation or chemical separation have major disadvantages since they generate a concentrated stream that is more harmful than the original waste. In this study, our purpose is to reduce cutting oils by using biological treatment. Eighty one strains were isolated from cutting waste oil of industrial waste water sludge under aerobic conditions. Among these strains, KS47, which removed 90.4% cutting oil in 48 hr, was obtained by screening test under aerobic conditions(pH 7, $28^{\circ}C$). KS47 was identified as Pseudomonas aeruginosa according to morphological, physiological and biochemical properties, 16S rDNA sequence, and fatty acid analysis. P. aeruginosa KS47 could utilize cutting oil as carbon source. In batch test, we obtained optimal degradation conditions(1.5 g/L cell concentration, pH 7, and temperature $30^{\circ}C$). Under the optimal conditions, 1,060 mg/L cutting oil was removed 83.7% (74.1 mg/L/hr).

Isolation and Identification of the Antilisterial Bifidobacterium Isolates from the Infants Fecal Samples (유아의 분변으로부터 항리스테리아 활성의 Bifidobacterium 속 균주의 분리 및 동정)

  • Kim, Song-Yi;Kim, Ki-Hwan;Youn, Soon-Yong;Yoon, Sung-Sik
    • Journal of Dairy Science and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • This study was conducted to isolate antilisterial strains of the Bifidobacterium isolates from the infant feces. The bifidobacteria were isolated anaerobically on BL agar and screened for their inhibitory activity on the MRS-cysteine medium against three foodborne pathogens: Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus. Among the 52 bifidobacterial isolates, 5 strains(A24, Bl, B6, B10, and Bl2) were finally selected based on their stronger antilisterial activity against Listeria monocytogenes than other isolates tested. Morphologically, all the isolates were typically shown Y-and V-shaped under electron microscopic examination. Each isolate was primarily subjected to identification by a polymerase chain reaction(PCR) using a genus-specific primer designed for targeting the 16S rRNA gene sequence, and confirmed the primary identification data using an API-kit(Biomeriuex, France), commercially available product for identification based on biochemical and physiological traits. Of the isolates with antilisterial activity, strain A24 was finally confirmed as the Bifidobacterium longum A24.

  • PDF

Comparative Genome analysis of the Genus Curvibacter and the Description of Curvibacter microcysteis sp. nov. and Curvibacter cyanobacteriorum sp. nov., Isolated from Fresh Water during the Cyanobacterial Bloom Period

  • Ve Van Le;So-Ra Ko;Mingyeong Kang;Seonah Jeong;Hee-Mock Oh;Chi-Yong Ahn
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1428-1436
    • /
    • 2023
  • The three Gram-negative, catalase- and oxidase-positive bacterial strains RS43T, HBC28, and HBC61T, were isolated from fresh water and subjected to a polyphasic study. Comparison of 16S rRNA gene sequence initially indicated that strains RS43T, HBC28, and HBC61T were closely related to species of genus Curvibacter and shared the highest sequence similarity of 98.14%, 98.21%, and 98.76%, respectively, with Curvibacter gracilis 7-1T. Phylogenetic analysis based on genome sequences placed all strains within the genus Curvibacter. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the three strains and related type strains supported their recognition as two novel genospecies in the genus Curvibacter. Comparative genomic analysis revealed that the genus possessed an open pangenome. Based on KEGG BlastKOALA analyses, Curvibacter species have the potential to metabolize benzoate, phenylacetate, catechol, and salicylate, indicating their potential use in the elimination of these compounds from the water systems. The results of polyphasic characterization indicated that strain RS43T and HBC61T represent two novel species, for which the name Curvibacter microcysteis sp. nov. (type strain RS43T =KCTC 92793T=LMG 32714T) and Curvibacter cyanobacteriorum sp. nov. (type strain HBC61T =KCTC 92794T=LMG 32713T) are proposed.