• Title/Summary/Keyword: 250 km/h

Search Result 72, Processing Time 0.025 seconds

A Propose of Design Parameters for the Max. Speed of 250 km/h of Overhead Rigid Conductor System (250 km/h급 강체전차선로 설계파라미터 제시)

  • Lee, Kiwon;Cho, Yong Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.740-744
    • /
    • 2017
  • Overhead Line is divided by two systems which are OCS (Overhead Catenary Line) and R-Bar (Overhead Rigid Conductor system). R-Bar has an advantage of maintenance and economic aspect comparing with OCS. R-Bar in Korea has developed for the max. speed of 120km/h, but it is evaluated up to the max. speed of 250 km/h in Europe. There are lots of mountains and underground sections in korea, it is really necessary to develop the R-Bar for a high-speed line. In the study, design parameters for the max. speed of 250 km/h of R-Bar was proposed. A bracket space, stiffness, and especially an installation tolerance of contact wire height at a bracket were considered as a parameter, and a dynamic behavior between a contact wire and pantograph was predicted by evaluated FEM simulation tool. The installation tolerance and bracket space are more important for the high-speed system. The proposed parameters was decided very conservative. Because the aerodynamic characteristics of a pantograph in tunnel is more severe than an open route and the simulation tool is not considered the such kind of aerodynamic characteristics.

Overhead Rigid Conductor and Transition Structure for High-Speed (Over 250 km/h) I : Structural Design (250 km/h급 고속용 강체전차선 및 이행장치 I : 구조설계)

  • Kim, Bong-Suk;Won, Yong-Hee;Park, Seol-Hee;Bae, Sang-Joon;Jang, Kwang-Dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • With the increasing running speed of trains, new railway lines in metropolitan areas, and the rising demand for green transportations, the number of underground and tunnel sections are constantly becoming larger, and installations of overhead rigid conductor systems are becoming wider. However, domestic commercial products for overhead rigid conductors are limited to 120 km/h train speeds. In this study, to develop a high-speed (250 km/h) overhead rigid conductor, R-Bar (Rigid Bar), the electrical and mechanical stability was enhanced through the improvement of the cross sectional shape of the R-Bar; the transition structure was also designed for flexibility and natural frequency isolation. In addition, the evaluation of contact forces between a pantograph and the overhead rigid conductor system for 250 km/h train speeds was performed using dynamic analysis.

First report of Gymnosporangium clavipes Cooke & Peck affecting Crataegus mexicana var. Chapeado and C. gracilior in Mexico

  • Alvarado-Rosales, D.;Nieto-Lopez, E.H.;Teliz-Ortiz, D.;Ayala-Escobar, V.;Silva-Rojas, H.V.;Nieto-Angel, R.;Leyva-Mir, S.G.;Jimenez-Nieto, A.;Mendez-Inocencio, C.
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.250-252
    • /
    • 2015
  • The tejocote (Crataegus spp.) is a tree considered to be native to Mexico. The aim of this study was to identify the causal agent of tejocote rust in the State of Puebla. Tejocote fruits were sampled in 2012 and 2013. The fungus was studied morphologically using light and scanning electron microscopy and molecularly using phylogenetic analysis of 18S and 28S rDNA genes. The fungus was identified as Gymnosporangium clavipes on tejocote fruits. To our knowledge, this is the first confirmed report of Gymnosporangium clavipes Cooke & Peck affecting Crataegus mexicana var. Chapeado and C. gracilior in Puebla Mexico.

Conceptual Design Study on Contact Loss Simulator for a Interface of High-speed Overhead Conductor Rail (고속 강체 전차선로의 인터페이스를 위한 이선현상 모의 시뮬레이터 개념 설계)

  • Jung, No-Geon;Lee, Jae-Bong;Chang, Chin-Young;Kim, Jae-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1579-1580
    • /
    • 2015
  • 철도차량의 동력원은 화석연료를 사용하던 디젤차량에서 최근 고속전철 및 도시철도차량, 경량전철 등 전기를 주 동력원으로 사용되고 있다. 철도차량에 전기를 공급하는 시스템은 일반적으로 개활지 등 지상구간에 적용되고 있는 가공전차선 방식과 지하구간, 터널 등에 적용되고 있는 강체가선방식 그리고 경량전철 등에 채용되고 있는 제 3궤조방식이 있다. 최근에는 일반적으로 지하구간의 가선시스템에 적용되던 T-Bar방식의 강체가선 방식에서 탈피하여 고속주행이 가능한 R-Bar방식의 강체가선 방식에 대한 연구가 많이 이루어지고 있다. 최근까지 지하구간의 터널구조에서 강체전차선로를 급전시스템으로 채택할 경우 열차의 최고속도는 국내의 경우 90km/h, 국외의 경우 160km/h를 넘지 못하는 실정이었다. 그러나 이를 극복한 제품이 개발되어 열차운행 최고속도를 200~250km/h까지 향상시킬 수 있게 되었다. 본 논문에서는 최근 설계속도 250km/h 급 R-bar방식 강체전차선로 인터페이스를 위한 이선현상 모의 시뮬레이터 개념 설계에 관한 연구를 수행하였다. 이를 위해 집전성능과 관계가 있는 전기철도차량 이선현상 요인 및 영향 분석하였으며 강체전차선로 운행에 따른 이선 등으로 인한 영향을 고찰하기 위해 이선 현상 모의 시뮬레이터 개념 설계에 대한 연구를 수행하였다.

  • PDF

A Study on Characteristics of Overhead Rigid Conductor System for Developing the High-speed System up to 250km/h (250km/h급 강체전차선로 시스템 개발을 위한 R-BAR 특성 고찰)

  • Bae, Sang-Joon;Jang, Kwang-Dong;Lee, Ki-Won;Park, Youn-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.492-497
    • /
    • 2015
  • An overhead rigid conductor system is mainly applied to the subway and recently studies on the rigid system have been conducted for applications such as tunnels of high-speed line and speed improvement of a conventional lines up to 250km/h. Power feeding performance which is the most important in a rigid system can be measured by contact force and characteristics of this contact force are related to the shape and material of the R-BAR. In this paper, we analyze the measurements of contact force, current heating temperature, impedance of a rigid conductor which was developed in Korea, after that we compare static characteristics of home and abroad rigid conductors which have various shapes and materials.

Study for Application of High Speed R-bar System in Metro Express Railway Tunnel (광역급행철도 터널에 고속 R-bar 적용에 관한 연구)

  • Ahn, Young-Hoon;Song, Jin-Ho;Kim, Si-Gu
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.409-412
    • /
    • 2011
  • Maximum speed of the train could not exceed over 160km/h with R-bar system in the underground type tunnel structure. By the research to overcome this speed limit, maximum speed has reached up to 200~250km/h recently by new R-bar system. It is under discussion to construct Metro Express Line between Gyonggido and Seoul which requires maximum speed 180km/h~230km/h. New R-bar is an optimal system to achieve the speed improvement in this line. This study shows application of the high speed R-bar system in the underground tunnel section.

  • PDF

Experimental Study on Ride Comfort of a Push-Pull Seamaeul Train in Case of Speed-up (전후동력 새마을호 열차의 속도향상 시 승차감에 관한 실험적 연구)

  • 구병춘;신종한;김남포;최성규
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.250-257
    • /
    • 2000
  • The speed-up of conventional trains is considered as one of the efficient methods to relieve traffic jam and to increase the capacity of transportation. In this study, we measured and analyzed the ride comfort of a push-pull Saemaeul Train with speed-up of 5km/h in curves and 10km/h on straight tracks as compared with present operation speed of the push-pull Saemaeul Trains. Four main lines-Honam, Kyungboo, Janghang, Kyungjeon- were chosen as representative lines for speed-up feasibility study. The increase of mean ride comfort index in case of speed-up is 0.5-2㏈. The mean ride comfort index of vertical direction in case of speed-up is 107-110㏈ for Honam line, 104-112㏈ for Kyungboo line, 108-112㏈ for Janghang line and 105-108㏈ for Kyungjeon line, which are rather high as compared with German trains of similar grade with maximum vehicle speed of 160km/h.

  • PDF

Power Generation Performance Evaluation according to the Vehicle Running on the Hybrid Energy Harvesting Block (하이브리드 에너지하베스팅 블록의 차량주행 발전성능 평가)

  • Kim, Hyo-Jin;Park, Ji-Young;Jin, Kyu-Nam;Noh, Myung-Hyun
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.307-314
    • /
    • 2016
  • Energy harvesting technique is to utilize energy that is always present but wasted. In this study, we have developed the energy harvester of the hybrid method utilizing both vibration and pressure of the vehicle traveling a road or parking lot. In the previous study, we have developed a prototype energy harvester, improved hybrid energy harvester, and developed a final product that offers improved performance in the hybrid module. The results were published in the previous paper. In this study, we installed the finally developed hybrid module in the actual parking lot. And we measured the power generation performance due to pressure and vibration, and the running speed of the vehicle when the vehicle is traveling. And we compared the results with those obtained in laboratory conditions. In a previous study performed in laboratory conditions the maximum power of the energy block was 1.066W when one single time of vibration, and 1.830W when succession with 5 times. On the other hand, in this study, we obtained the average power output of 0.310W when the vehicle is running at an average 5 km/h, 0.670W when at an average 10 km/h, and 1.250W when at an average 20 km/h, and 2.160W when at an average 5 km/h. That is, the higher the running speed of the vehicle has increased power generation performance. However, when compared to laboratory conditions, the power generation performance of the energy block in driving speed by 20km/h was lower than those in laboratory conditions. In addition, when compared to one time of vibration of laboratory conditions, power generation performance was higher when the running speed 20km/h or more and when five consecutive times in laboratory conditions, it was higher when the running speed 30km/h or more. It could be caused by a difference of load conditions between the laboratory and the actual vehicle. Thus, applying the energy block on the road would be more effective than that on the parking lot.

An Implement of Vision based Measurement Technology for Traction Power System up to 250 km/h (250 km/h급 전철설비의 비전기반 검측 기술 구현)

  • Park, Young-Sig;Na, Kyung-Min;Park, Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.976-980
    • /
    • 2018
  • The traction power system is configured to transmit electricity to the vehicles through mechanical contact between the OCL (Overhead Contact Line) and the pantograph. The system measures the current collection performance of the OCL, or the OCL installation condition is examined through maintenance for commercial operation. Maintenance continues to check the conditions through visual inspection by walking and inspection vehicles. The current collection performance is divided into the percentage of arcing(%), the contact force, and the uplift. The percentage of arcing is composed of a vision based system and used to verify the performance of a new OCL. However, it is not always possible to measure the current collection performance during commercial operation, and maintenance based on human resources can not be replaced. This paper presents the minimum performance condition of video devices in the current collection system of commercial vehicles. In addition, a continuous arcing was measured, and current collection performance was examined on the traction power system at the 250 km/h. It was analyzed with a minimum duration of arc of 1 ms. The frame rate is then shown by comparing the number of frames in the image at the time intervals of the number of the arcing. It is expected that the result of this study can be used for examining the minimum performance of video devices depending on their purpose.