• Title/Summary/Keyword: 2015 개정 과학과 교육 과정

Search Result 226, Processing Time 0.025 seconds

Exploration of Contents Composition of High School Earth Science for the 2022 Revised Curriculum: Focus on the Area of Astronomy (2022 개정 교육과정 고등학교 지구과학 내용 구성 방안 탐색 -천문 영역을 중심으로-)

  • Kim, Hyunjong
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.6
    • /
    • pp.441-454
    • /
    • 2021
  • In this study, we propose the composition of contents on the area of astronomy for high school Earth Science elective courses for the 2022 revised curriculum based on high school students' perceptions of changes in Earth Science core concepts over the curriculum revisions, and analysis of learning elements in the area of astronomy for domestic and foreign Earth Science curriculum. Four Earth Science education experts compared and analyzed the astronomy contents presented in Korea, the US, British Columbia (BC) in Canada, Japan, and the International Baccalaureate Diploma Program (IBDP) curriculum. According to the survey results, high school students who answered that they were most interested in the core concepts of astronomy expressed a lot of regret that the contents related to astronomical observation were eliminated from the 2015 revised curriculum. As a result of comparing domestic and foreign curriculum, Korea and IBDP curriculum dealt with the largest amount of learning elements in astronomy. In the case of BC in Canada and IBDP, astronomy was offered as an independent subject, and the curriculums of Japan and Korea dealt with astronomy in the Earth Science subject. According to the results, it is necessary to develop general elective courses in Earth Science with astronomy-related contents with high discriminating power in order to strengthen astronomy education. Since astronomy requires background knowledge from various disciplines and inter-disciplinary learning was required, it is necessary to organize the career-related elective courses in Earth Science so that astronomy can be dealt with according to the knowledge structure of general Astronomy. Based on the research results, ways to organize astronomy contents for Earth Science elective courses were suggested.

A Comparative Analysis of Keywords in Astronomical Journals and Concepts in Secondary School Astronomy Curriculum (최근 천문학 연구 키워드와 천체 분야 교육과정 내용 요소 비교 분석)

  • Shin, Hyeonjeong;Kwon, Woojin;Ga, Seok-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.2
    • /
    • pp.289-309
    • /
    • 2022
  • In recent years, astronomy has been snowballing: including Higgs particle discovery, black hole imaging, extraterrestrial exploration, and deep space observation. Students are also largely interested in astronomy. The purpose of this study is to discover what needs to be improved in the current astronomy curriculum in light of recent scientists' researches and discoveries. We collected keywords from all papers published from 2011 to 2020 in four selected journals-ApJ, ApJL, A&A, and MNRAS- by R package to examine research trends. The curriculum contents were extracted by synthesizing the in-service teachers' coding results in the 2015 revised curriculum document of six subjects (Science, Integrated Science, Earth Science I, Earth Science II, Physics II, Convergence Science). The research results are as follows: first, keywords that appear steadily in astronomy are 'galaxies: formation, galaxy: active, star: formation, accretion, method: numerical.' Second, astronomy curriculum includes all areas except the 'High Energy Astrophysical Phenomena' area within the common science curriculum learned by all students. Third, it is necessary to review the placement of content elements by subject and grade and to consider introducing new concepts based on astronomy research keywords. This is an exploratory study to compare curriculum and the field of scientific research that forms the basis of the subject. We expect to provide implications for a future revision of the astronomy curriculum as a primary ground investigation.

Investigating the Improvement of Concept and Inquiry Activities in Elementary School Science Textbook of the 2015 Revised Curriculum - Focus on Earth Science Section - (2015 개정 교육과정 초등학교 과학 교과서에 제시된 개념과 탐구 활동의 개선 방안 조사 - 지구과학 영역을 중심으로 -)

  • Lee, Hyundong
    • Journal of Science Education
    • /
    • v.44 no.3
    • /
    • pp.300-317
    • /
    • 2020
  • The purpose of this study is to suggest improvements in the science concepts and inquiry activities presented in the earth science section in the 2015 revised curriculum elementary science textbooks. For this study, two science educator and three elementary school teachers developed a survey questionnaire to investigate science concepts, inquiry activities, and suggest improvements. The survey was conducted two times, and 30 elementary school teachers and three earth science professors (geology, meteorology, astronomy) participated in the survey. As a result, it was investigated that eight concepts in the solid section, three concepts in the fluid section, and one concept in universe and integration section contained misconceptions. It was investigated that the content of inquiry activity needs to be supplemented, with seven elements in solid section, three elements in fluid section, and one in the universe and integration section. According to the research results, if the textbook is revised, it is necessary to accurately confirm the science concepts or content of inquiry activities. Also in the case of science concepts presented in textbooks, it will be necessary to consider not only the scope and sequence of contents but also the process of learning progression.

A Comparative Study on Chemistry Education Contents of South Korea and North Korea (남한과 북한의 화학교육 내용 요소 비교 연구)

  • Min, Byoung Wook;Park, Hyun Ju
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.124-135
    • /
    • 2022
  • The purpose of this study was to analyze the chemisry education contents of South Korea and North Korea for understanding chemistry education of North Korea. Chemistry education in South and North Korea was investigated in terms of learning period and learning quantaty. Especially, what content North Korea learned prior to South Korea and what contents learned more were analyzed. The subjects of this study were South Korean 2015 revised National Science Curriculum and North Korean science textbooks in Kim Jong-un era. The North Korean textbooks analyzed are 'Nature' for North Korean elementary school 3, 'Natural Science' for North Korean middle school 1 and 2, and 'Chemistry' for North Korean high school 1 and 2. The analysis results are as follows. First, the content elements to be learned in advance in North Korean textbooks were density, oxidation and reduction, battery, and atomic weight. Second, the content elements additionally learned in North Korean textbooks include separation of mixtures, fuels, oxidation and reduction, metals, organic and inorganic substances, metals and non-metal oxides and hydroxides, inorganic substances used as fertilizers, nutritional substances, and salt reaction and utilization, atomic orbitals, hybridization of orbitals, coordination bonds and complexes. As a future research task, a qualitative analysis of the elements of North Korean chemistry, the activities of textbooks, and an experimental analysis were proposed.

Weight as Knowledge to be taught according to Didactic Transposition Theory (가르칠 지식으로서 무게에 대한 분석: 교수학적 변환 이론을 중심으로)

  • Choi, Jisun
    • Education of Primary School Mathematics
    • /
    • v.25 no.4
    • /
    • pp.377-394
    • /
    • 2022
  • Criticism has been raised that the way of teaching weights in the 3rd and 4th graders of elementary school is different between the 2015 revised math curriculum and the 2015 revised science curriculum, causing confusion among elementary school teachers and students. This study tried to confirm the social recognition that should be considered in the process of didactic transformation which means transformation from knowledge to used into knowledge to taught and to compare the variations of didactic transformations differently according to didactic intentions. The research analyzes and synthesizes the root of the meaning of weight, weight in the international standard system of units SI, weight implemented in Korean mathematics curriculum and textbooks, Singaporean mathematics curriculum and textbooks, USA mathematics curriculum and textbooks, and Korean science curriculum and textbooks. Through this analysis, a pedagogical perspective on how to define and teach weight in elementary school as knowledge to be taught was derived.

Middle School Science Gifted Students' Perceptions of the Effectiveness of Science Classes Using Science Writing Heuristic (탐구적 과학 글쓰기를 적용한 과학 수업의 효과에 대한 중학교 과학 영재들의 인식)

  • Shin, Eunji;Choi, Wonho
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.5
    • /
    • pp.277-290
    • /
    • 2020
  • In this study, four gifted students in the second year of middle school at Gifted Education Center of the National University in Jeollanam-do were surveyed students' perceptions of the effectiveness of science class using science writing heuristic in terms of metacognition and the goals of the 2015 revised science curriculum. Through questionnaires and interviews with gifted science students, science gifted students recognized that the science class using science writing heuristic had a positive effect on the four subdomains (planning, monitoring, control, and evaluation) of metacognition. For this reason, the science gifted students presented self-directed experience in designing experiments, continually checking the collected experimental data, feedback process, and reflecting experience in preparing conclusions. Science gifted students recognized that science class using science writing heuristic had a positive effect on the goals of the 2015 revised science curriculum(attitudes, inquiry, knowledge, Science·Technology·Society(STS), and the enjoyment and usefulness of science learning) that correspond to through inquiry science writing lessons. For this reason, the science gifted students presented self-directed inquiry experiences, continual inquiry experiences on the same subject, thinking process at each stage of inquiry, learning experiences through inquiry, experience of the whole inquiry process, and inquiry of phenomena closely related to real life. Therefore, for the effective science class, it is necessary to apply the characteristics of science class using science writing heuristic which is responded by science gifted students to general science class as well as science gifted class later.

'Development' and 'Relations', as the Core Concepts of Home Economics in 2015 Revised Middle School Curriculum in Korea (2015 개정 가정과의 핵심개념 '발달과 관계' - 중학교 교육과정을 중심으로 -)

  • Lim, JungHa;Jun, Mi-Kyung
    • Journal of Korean Home Economics Education Association
    • /
    • v.28 no.1
    • /
    • pp.1-17
    • /
    • 2016
  • The purpose of this review was to introduce and examine 'development' and 'relations' as the core concepts of Home Economics in 2015 revised middle school curriculum in Korea. The 2009 and 2015 proclamation of the ministry of education on home economics curriculum and 26 published middle school textbooks were reviewed. The major findings were as follows. First, the components of human 'development' and family 'relations' were strongly associated with promoting four key competencies (i.e. the self-management competency, the communication competency, the aesthetic sensibility competency, the community competency) of 2015 revision. Also, four of cross-curricular learning topics (i.e. character education, multicultural education, safety and health education, human right education) in 2015 revision could be effectively discussed with human 'development' and family 'relations'. Second, when teaching and learning of the core concept, human 'development', continuous dynamic aspects of life-span development, the connectedness of different domains of development, systematic approach of various concepts in development, specificity and empirical evidence of information and variability of developmental patterns in adolescence should be considered. Third, when teaching and learning of the core concept, family 'relations', family trait such as generational relations, gender relations, role relations and power relations should be taken into account. In addition, exclusively focusing on normal family ideology or image of middle-class family and lecture-centered instruction methods should be changed for students to achieve the competencies relevant to family relations. The future directions for applying core concepts, 'development' and 'relations' in classroom will be discussed.

Exploration of the Status of Course Completion and Ways to Raise Selection Rates of General Elective Courses in the 2015 Revised Science Curriculum (2015 개정 과학과 일반선택과목의 수강 현황 및 선택률 제고 방안 탐색)

  • Lee, Il;Kwak, Youngsun
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.2
    • /
    • pp.217-226
    • /
    • 2020
  • The purpose of this research is to draw suggestions on the settling of the 2015 revised curriculum and the direction of science curriculum improvement by identifying the current status of science general elective courses for high school sophomores, and examining teachers' perception. To this end, with 12 city and provincial education offices' cooperation, we analyzed the status of science elective subjects that freshmen took in 2018 by school year, school type and region. In addition, in-depth interviews were conducted with nine science teachers of the focus group to discuss ways to improve curriculum operation and implementation of science general elective courses, and ways to raise the selection rate. The number of science general elective courses for high school students in 12 municipal and provincial education offices was confirmed to be 163,710 for Physics I, 216,754 for Chemistry I, 290,736 for Bioscience I, and 200,861 for Earth Science I. By school type, autonomous high schools have the highest completion rate, while specialized schools and vocational schools have very low rates. Units completed per semester for general elective courses were mostly three units (61.5%) and two units (28.7%). High school science teachers suggested reconstruction of three-unit elective courses that can be completed in one semester, content development focused on competences rather than knowledge, and the need for a teacher community to improve teachers' teaching competences. Based on the results of the research, ways to operate high school science elective curriculum in preparation for the high school credit system were suggested.

Analysis of Safety Contents in the High School Science Textbooks Based on the 2015 Revised National Science Curriculum (2015 개정 고등학교 과학 교과 교과서에 제시된 안전 관련 내용 분석)

  • Lee, Seyeon;Lee, Bongwoo
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.4
    • /
    • pp.563-571
    • /
    • 2019
  • The purpose of this study is to analyze the safety contents presented in high school science textbooks of the 2015 revised national science curriculum. For these, we found safety contents in the inquiries and appendices of 63 science textbooks: integrated science, science inquiry experiment, physics I, II, chemistry I, II, biology I, II, and earth science I, II. We analyzed these safety contents using six safety factors based on the seven standards for safety education. The main results are as follows: First, 81(46.0%) inquiries among 176 curriculum inquiries contain safety contents, and these contents are mainly found in chemistry textbooks, and the least in 'science inquiry experiment' textbooks. Second, safety contents are found the most in 'laboratory safety rule', followed by 'safety symbol' and 'usage of protection equipment'. Third, the safety contents of appendices are mainly in 'laboratory safety rule' and 'accident treatment'. Based on these results of this study, it is concluded that these textbooks have problems; that there is a big difference in describing safety contents in each textbook; that these safety contents are not presented in detail and that the educational effect is reduced. Furthermore, the safety symbol is not standardized. We also discussed ways to improve the safety contents of science textbooks.

Analyzation and Improvements of the Revised 2015 Education Curriculum for Information Science of Highschool: Focusing on Information Ethics and Multimedia (고등학교 정보과학의 2015 개정 교육과정에 대한 분석 및 개선 방안: 정보윤리와 멀티미디어를 중심으로)

  • Jeong, Seungdo;Cho, Jungwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.208-214
    • /
    • 2016
  • With the rising interest in intelligence information technology built on artificial intelligence and big data technologies, all countries in the world including advanced countries such as the United States, the United Kingdom, Japan and so on, have launched national investment programs in preparation for the fourth industrial revolution centered on the software industry. Our country belatedly recognized the importance of software and initiated the 2015 revised educational curriculum for elementary and secondary informatics subjects. This paper thoroughly analyzes the new educational curriculum for information science in high schools and, then, suggests improvements in the areas of information ethics and multimedia. The analysis of the information science curriculum is applied to over twenty science high schools and schools for gifted children, which are expected to play a leading role in scientific research in our country. In the future artificial intelligence era, in which our dependence on information technology will be further increased, information ethics education for talented students who will play the leading role in making and utilizing artificial intelligence systems should be strongly emphasized, and the focus of their education should be different from that of the existing system. Also, it is necessary that multimedia education centered on digital principles and compression techniques for images, sound, videos, etc., which are commonly used in real life, should be included in the 2015 revised educational curriculum. In this way, the goal of the 2015 revised educational curriculum can be achieved, which is to encourage innovation and the efficient resolution of problems in real life and diverse academic fields based on the fundamental concepts, principles and technology of computer science.